Hersenen: functies, structuur

De hersenen vormen natuurlijk het grootste deel van het menselijke centrale zenuwstelsel.

Wetenschappers denken dat het slechts 8% is.

Daarom zijn de verborgen mogelijkheden eindeloos en niet bestudeerd. Er is ook geen relatie tussen talenten en menselijke capaciteiten. De structuur en functie van de hersenen impliceren controle over de gehele vitale activiteit van het organisme.

De locatie van de hersenen onder de bescherming van de sterke botten van de schedel zorgt voor de normale werking van het lichaam.

structuur

Het menselijk brein wordt betrouwbaar beschermd door sterke beenderen van de schedel en neemt bijna de gehele schedelruimte in beslag. Anatomisten onderscheiden voorwaardelijk de volgende hersengebieden: de twee hemisferen, de romp en de kleine hersenen.

Er wordt ook een andere divisie genomen. Delen van de hersenen zijn de tijdelijke, frontale lobben en de kruin en de achterkant van het hoofd.

De structuur is samengesteld uit meer dan honderd miljard neuronen. De massa is normaal heel anders, maar het bereikt 1800 gram, voor vrouwen is het gemiddelde iets lager.

Het brein bestaat uit grijze massa. De cortex bestaat uit dezelfde grijze materie, gevormd door bijna de gehele massa zenuwcellen die bij dit orgaan horen.

Daaronder is verborgen witte materie, bestaande uit processen van neuronen, die geleiders zijn, zenuwimpulsen worden verzonden van lichaam naar subcortex voor analyse, evenals opdrachten van de cortex naar delen van het lichaam.

De verantwoordelijkheidsgebieden van de hersenen voor hardlopen bevinden zich in de cortex, maar ze bevinden zich ook in de witte materie. Diepe centra worden nucleair genoemd.

Vertegenwoordigt de hersenstructuur, in de diepten van zijn hol gebied bestaande uit 4 ventrikels, gescheiden door leidingen, waar het fluïdum dat de beschermende functie uitvoert, circuleert. Buiten heeft het bescherming tegen drie schelpen.

functies

Het menselijk brein is de heerser over het hele leven van het lichaam, van de kleinste bewegingen tot een hoge denkfunctie.

Hersenverdelingen en hun functies omvatten de verwerking van signalen van receptormechanismen. Veel wetenschappers denken dat haar functies ook verantwoordelijkheid voor emoties, gevoelens en geheugen omvatten.

Details moeten rekening houden met de basisfuncties van de hersenen, evenals de specifieke verantwoordelijkheid van de secties.

beweging

Alle motorische activiteit van het lichaam verwijst naar het beheer van de centrale gyrus, die door de voorkant van de pariëtale kwab loopt. De coördinatie van de bewegingen en het vermogen om evenwicht te bewaren zijn de verantwoordelijkheid van de centra in de occipitale regio.

Naast het occiput bevinden dergelijke centra zich direct in het cerebellum en dit orgaan is ook verantwoordelijk voor het spiergeheugen. Daarom leiden storingen in het cerebellum tot verstoringen in het functioneren van het bewegingsapparaat.

gevoeligheid

Alle zintuiglijke functies worden gecontroleerd door de centrale gyrus die langs de achterkant van de pariëtale kwab loopt. Hier bevindt zich ook het besturingscentrum van de lichaamspositie, de leden ervan.

Zintuigen

Centra in de temporale kwabben zijn verantwoordelijk voor de auditieve gewaarwordingen. Visuele sensaties voor een persoon worden geleverd door de centra in de achterkant van het hoofd. Hun werk wordt duidelijk aangetoond door de tabel met oogonderzoek.

De verstrengeling van de windingen op de kruising van de stoffelijke en frontale kwabben verbergt de centra die verantwoordelijk zijn voor reuk, smaak en voelbare gewaarwordingen.

Spraakfunctie

Deze functionaliteit kan worden onderverdeeld in het vermogen spraak te produceren en spraak te verstaan.

De eerste functie wordt motor genoemd en de tweede is sensorisch. De sites die verantwoordelijk zijn voor hen zijn talrijk en bevinden zich in de windingen van de rechter- en linkerhersenhelft.

Reflex-functie

De zogeheten langwerpige afdeling omvat gebieden die verantwoordelijk zijn voor vitale processen die niet door het bewustzijn worden beheerst.

Deze omvatten contracties van de hartspier, ademhaling, vernauwing en verwijding van bloedvaten, beschermende reflexen, zoals scheuren, niezen en braken, evenals het monitoren van de toestand van de gladde spieren van de inwendige organen.

Shell-functies

Het brein heeft drie schelpen.

De structuur van de hersenen is zodanig dat naast bescherming elk van de membranen bepaalde functies vervult.

De zachte schaal is ontworpen om te zorgen voor een normale bloedtoevoer, een constante stroom zuurstof voor zijn ononderbroken functioneren. Ook produceren de kleinste bloedvaten met betrekking tot de zachte huls ruggenmergvloeistof in de ventrikels.

Het arachnoïdmembraan is het gebied waar de liquor circuleert, voert werk uit dat de lymfe in de rest van het lichaam uitvoert. Dat wil zeggen, het biedt bescherming tegen pathologische middelen om in het centrale zenuwstelsel binnen te dringen.

De harde schaal grenst aan de botten van de schedel, zorgt samen met hen voor de stabiliteit van de grijze en witte medulla, beschermt deze tegen schokken, verschuift tijdens mechanische impact op het hoofd. Ook scheidt de harde schil zijn secties.

afdelingen

Waaruit bestaan ​​de hersenen?

De structuur en de hoofdfuncties van de hersenen worden door de verschillende onderdelen ervan uitgevoerd. Vanuit het oogpunt van de anatomie van een orgaan van vijf secties, die werden gevormd in het proces van ontogenese.

Verschillende delen van de hersencontrole en zijn verantwoordelijk voor het functioneren van individuele systemen en organen van een persoon. De hersenen zijn het belangrijkste orgaan van het menselijk lichaam, de specifieke afdelingen zijn verantwoordelijk voor het functioneren van het menselijk lichaam als geheel.

langwerpig

Dit deel van de hersenen is een natuurlijk onderdeel van de wervelkolom. Het werd eerst gevormd in het proces van ontogenese, en het is hier dat de centra zich bevinden die verantwoordelijk zijn voor ongeconditioneerde reflexfuncties, evenals ademhaling, bloedcirculatie, metabolisme en andere processen die niet door het bewustzijn worden beheerst.

Achterste hersenen

Waar is het achterste brein voor verantwoordelijk?

In dit gebied bevindt zich het cerebellum, een gereduceerd model van het orgel. Het is het achterste brein dat verantwoordelijk is voor de coördinatie van bewegingen, het vermogen om evenwicht te bewaren.

En het is het achterste brein dat de plaats is waar zenuwimpulsen door de neuronen van het cerebellum worden overgedragen, zowel vanuit de extremiteiten als andere delen van het lichaam, en omgekeerd, dat wil zeggen, de gehele fysieke activiteit van een persoon wordt gecontroleerd.

gemiddelde

Dit deel van de hersenen is niet volledig begrepen. De middenhersenen, de structuur en functies worden niet volledig begrepen. Het is bekend dat de centra die verantwoordelijk zijn voor perifeer zicht, de reactie op scherpe geluiden zich hier bevinden. Het is ook bekend dat delen van de hersenen zich hier bevinden die verantwoordelijk zijn voor het normale functioneren van de waarnemingsorganen.

tussen-

Hier is een sectie genaamd de thalamus. Door het passeren van alle zenuwimpulsen verzonden door verschillende delen van het lichaam naar de centra in de hemisferen. De rol van de thalamus is om de aanpassing van het lichaam te beheersen, een reactie te bieden op externe stimuli, ondersteunt de normale zintuiglijke waarneming.

In de tussensectie bevindt zich de hypothalamus. Dit deel van de hersenen stabiliseert het perifere zenuwstelsel en bestuurt ook de werking van alle inwendige organen. Hier is het on-off organisme.

Het is de hypothalamus die de lichaamstemperatuur, de tonus van de bloedvaten, de samentrekking van gladde spieren van inwendige organen (peristaltiek) regelt en ook een gevoel van honger en verzadiging vormt. De hypothalamus bestuurt de hypofyse. Dat wil zeggen, het is verantwoordelijk voor het functioneren van het endocriene systeem, regelt de synthese van hormonen.

De finale

Het uiteindelijke brein is een van de jongste delen van de hersenen. Het corpus callosum zorgt voor communicatie tussen de rechter en linker hemisfeer. In het proces van ontogenese werd het gevormd door de laatste van alle samenstellende delen, het vormt het belangrijkste deel van het orgel.

Gebieden van het uiteindelijke brein voeren alle hogere zenuwactiviteit uit. Hier is het overweldigende aantal convoluties, het is nauw verbonden met de subcortex, waardoor het hele leven van het organisme onder controle is.

Het brein, de structuur en functies zijn grotendeels onbegrijpelijk voor wetenschappers.

Veel wetenschappers bestuderen het, maar ze zijn nog lang niet in staat om alle mysteries op te lossen. De eigenaardigheid van dit lichaam is dat zijn rechterhersenhelft het werk van de linkerkant van het lichaam beheerst, en ook verantwoordelijk is voor algemene processen in het lichaam, en de linkerhelft coördineert de rechterkant van het lichaam, en is verantwoordelijk voor talenten, vermogens, denken, emoties en geheugen.

Bepaalde centra hebben geen dubbels in het tegenovergestelde halfrond, bevinden zich in linkshandigen in het rechtergedeelte en in rechtshandige links.

Concluderend kunnen we stellen dat alle processen, van fijne motoriek tot uithoudingsvermogen en spierkracht, evenals emotionele sfeer, geheugen, talenten, denken, intelligentie, worden beheerd door één klein lichaam, maar met een nog steeds onbegrijpelijke en mysterieuze structuur.

Letterlijk, het hele leven van een persoon wordt geregeld door het hoofd en de inhoud ervan, daarom is het zo belangrijk om te waken tegen onderkoeling en mechanische schade.

§ 45. De structuur van de hersenen. Functies van de medulla en medulla, de brug en het cerebellum

Gedetailleerde oplossing Sectie 45 van de biologie voor 8e klas studenten, auteurs D.V. Kolesov, R.D. Mash, I.N. Belyaev 2014

Vragen aan het begin van de paragraaf.

Vraag 1. Waarom is schade aan de medulla oblongata fataal?

De medulla oblongata is qua structuur en functie vergelijkbaar met het ruggenmerg, waarmee het een directe ondergrens heeft. In de medulla oblongata bevinden zich de kernen van de nervus vagus, die het hart en andere interne organen innerveren. In de kernen van de grijze materie van de medulla oblongata bevinden zich de centra van beschermende reflexen - knipperen en knevelen, reflexen van hoesten en niezen, andere. Een andere groep centra heeft betrekking op voeding en ademhaling - dit zijn de centra van inademing en uitademing, speekselvloed, slikken en scheiding van maagsap. Het voert zeer belangrijke functies uit voor het lichaam, dus de schade is dodelijk.

Vraag 2. Hoe is de nauwkeurigheid en soepelheid van vrijwillige bewegingen?

Nauwkeurigheid en soepelheid van bewegingen wordt geleverd door het cerebellum.

Vragen aan het einde van de paragraaf.

Vraag 1. Wat zijn de divisies van de hersenen?

De hersenen bestaan ​​uit de medulla oblongata, het cerebellum, de brug, de middenhersenen, de diencephalon en de hersenhelften.

Vraag 2. Wat zijn de functies van de medulla?

Langwerpige hersenen - de voortzetting van het ruggenmerg. Het bevat zenuwcentra die vitale functies reguleren (ademhaling, spijsvertering, de activiteit van de bloedsomloop, een aantal verdedigende reacties).

Vraag 3. Wat zijn de nerveuze paden door de brug?

Door de brug passeren de zenuwbanen die de voorgrond en de middenhersenen verbinden met de medulla oblongata, de kleine hersenen en het ruggenmerg. Akoestische paden passeren de brug.

Vraag 4. Wat zijn de functies van de middenhersenen?

De middenhersenen verbinden de voorhersenen met het achterste (medulla, pons en cerebellum). De middenhersenen bevatten een aantal belangrijke sensorische en motorische centra, waaronder het centrum van visie en gehoor.

Vraag 5. Wat is de rol van de kleine hersenen bij de uitvoering van de bewegingen?

Het cerebellum coördineert bewegingen, maakt ze nauwkeurig, soepel en geproportioneerd, elimineert onnodige bewegingen, onderhoudt de houding en balans van het lichaam.

Hoe werkt het menselijk brein: afdelingen, structuur, functie

Het centrale zenuwstelsel is het deel van het lichaam dat verantwoordelijk is voor onze perceptie van de buitenwereld en onszelf. Het reguleert het werk van het hele lichaam en is in feite het fysieke substraat van wat we het 'ik' noemen. Het belangrijkste orgaan van dit systeem zijn de hersenen. Laten we eens kijken hoe de hersensecties zijn gerangschikt.

Functies en structuur van het menselijk brein

Dit orgel bestaat voornamelijk uit cellen die neuronen worden genoemd. Deze zenuwcellen produceren elektrische impulsen die het zenuwstelsel laten werken.

Het werk van neuronen wordt geleverd door cellen die neuroglia worden genoemd - ze vormen bijna de helft van het totale aantal CNS-cellen.

Neuronen bestaan ​​op hun beurt uit een lichaam en uit twee soorten processen: axonen (zendimpuls) en dendrieten (ontvangende impuls). De lichamen van zenuwcellen vormen een weefselmassa, die grijze massa wordt genoemd, en hun axonen worden in de zenuwvezels geweven en zijn witte stof.

  1. Solid. Het is een dunne film, een zijde naast het botweefsel van de schedel en de andere kant direct naar de cortex.
  2. Soft. Het bestaat uit een losse stof en omhult het oppervlak van de hersenhelften stevig en gaat alle scheuren en groeven in. Zijn functie is de bloedtoevoer naar het orgel.
  3. Spider Web. Gelegen tussen de eerste en tweede schelpen en voert de uitwisseling uit van hersenvocht (hersenvocht). Drank is een natuurlijke schokdemper die de hersenen beschermt tegen schade tijdens het bewegen.

Vervolgens gaan we dieper in op hoe het menselijk brein werkt. De morfofunctionele kenmerken van de hersenen zijn ook verdeeld in drie delen. Het onderste gedeelte wordt diamant genoemd. Waar het romboïdale deel begint, eindigt het ruggenmerg - het passeert in de medulla en posterior (de pons en de kleine hersenen).

Dit wordt gevolgd door de middenhersenen, die de lagere delen verenigen met het belangrijkste zenuwcentrum - het voorste deel. De laatste omvat de terminale (cerebrale hemisferen) en diencephalon. De sleutelfuncties van de hersenhelften zijn de organisatie van hogere en lagere zenuwactiviteit.

Laatste brein

Dit deel heeft het grootste volume (80%) in vergelijking met de andere. Het bestaat uit twee grote hemisferen, het corpus callosum dat ze verbindt, evenals het reukcentrum.

De cerebrale hemisferen, links en rechts, zijn verantwoordelijk voor de vorming van alle denkprocessen. Hier is de grootste concentratie van neuronen en de meest complexe verbindingen tussen hen worden waargenomen. In de diepte van de longitudinale groef, die het halfrond verdeelt, bevindt zich een dichte concentratie van witte stof - het corpus callosum. Het bestaat uit complexe plexus van zenuwvezels die verschillende delen van het zenuwstelsel doorkruisen.

Binnen de witte materie bevinden zich clusters van neuronen, die de basale ganglia worden genoemd. Door de nabijheid van het "transportknooppunt" van de hersenen kunnen deze formaties de spiertonus reguleren en ogenblikkelijke reacties van de reflexmotor uitvoeren. Bovendien zijn de basale ganglia's verantwoordelijk voor de vorming en operatie van complexe automatische acties, waarbij de functies van het cerebellum gedeeltelijk worden herhaald.

Hersencortex

Deze kleine oppervlaktelaag van grijze stof (tot 4,5 mm) is de jongste formatie in het centrale zenuwstelsel. Het is de hersenschors die verantwoordelijk is voor het werk van de hogere zenuwactiviteit van de mens.

Studies hebben het mogelijk gemaakt om te bepalen welke gebieden van de cortex werden gevormd tijdens de evolutionaire ontwikkeling relatief recent en die nog steeds aanwezig waren in onze prehistorische voorouders:

  • neocortex is een nieuw buitenste deel van de cortex, dat er het grootste deel van uitmaakt;
  • archicortex - een oudere entiteit die instaat voor instinctief gedrag en menselijke emoties;
  • Paleocortex is het oudste gebied dat te maken heeft met de beheersing van vegetatieve functies. Bovendien helpt het om de interne fysiologische balans van het lichaam te behouden.

Frontale lobben

De grootste lobben van de grote hemisferen die verantwoordelijk zijn voor complexe motorische functies. De vrijwillige bewegingen zijn gepland in de voorhoofdskwabben van de hersenen, en spraakcentra bevinden zich hier ook. Het is in dit deel van de cortex dat volitional controle van gedrag wordt uitgevoerd. In geval van schade aan de frontale kwabben, verliest een persoon de macht over zijn acties, gedraagt ​​zich asociaal en is eenvoudigweg ontoereikend.

Occipitale lobben

Nauw verwant aan de visuele functie, zijn ze verantwoordelijk voor de verwerking en perceptie van optische informatie. Dat wil zeggen, ze transformeren de hele reeks van die lichtsignalen die het netvlies binnenkomen in betekenisvolle visuele beelden.

Pariëtale lobben

Ze voeren ruimtelijke analyses uit en verwerken de meeste sensaties (aanraking, pijn, "spiergevoel"). Bovendien draagt ​​het bij aan de analyse en integratie van verschillende informatie in gestructureerde fragmenten - het vermogen om het eigen lichaam en de zijkanten ervan te voelen, het vermogen om te lezen, lezen en schrijven.

Temporale lobben

In dit gedeelte vindt analyse en verwerking van audio-informatie plaats, die de functie van horen en de perceptie van geluiden garandeert. Temporale lobben zijn betrokken bij het herkennen van de gezichten van verschillende mensen, evenals gezichtsuitdrukkingen en emoties. Hier is informatie gestructureerd voor permanente opslag, en dus wordt langetermijngeheugen geïmplementeerd.

Bovendien bevatten de temporale lobben spraakcentra, waarbij beschadiging leidt tot een onvermogen om orale spraak waar te nemen.

Eilandje deelt

Het wordt verantwoordelijk geacht voor de vorming van bewustzijn in de mens. Op momenten van empathie, empathie, luisteren naar muziek en de geluiden van lachen en huilen, is er een actief werk van de eilandje kwab. Het behandelt ook gevoelens van afkeer van vuil en onaangename geuren, inclusief denkbeeldige stimuli.

Tussenliggende hersenen

Het intermediaire brein dient als een soort filter voor neurale signalen - het neemt alle binnenkomende informatie en bepaalt waar het heen moet. Bestaat uit de onderrug en de rug (thalamus en epithalamus). De endocriene functie wordt ook in deze sectie gerealiseerd, d.w.z. hormonaal metabolisme.

Het onderste deel bestaat uit de hypothalamus. Deze kleine dichte bundel neuronen heeft een enorme impact op het hele lichaam. Naast het reguleren van de lichaamstemperatuur regelt de hypothalamus de cycli van slaap en waakzaamheid. Het geeft ook hormonen vrij die verantwoordelijk zijn voor honger en dorst. Als centrum van plezier reguleert de hypothalamus seksueel gedrag.

Het is ook direct gerelateerd aan de hypofyse en vertaalt de zenuwactiviteit naar endocriene activiteit. De functies van de hypofyse bestaan ​​op hun beurt uit de regulatie van het werk van alle klieren van het lichaam. Elektrische signalen gaan van de hypothalamus naar de hypofyse van de hersenen, "bestellen" de productie van welke hormonen moeten worden gestart en welke moeten worden gestopt.

Het diencephalon bevat ook:

  • De thalamus - dit deel vervult de functies van een "filter". Hier worden de signalen van de visuele, auditieve, smaak- en voelbare receptoren verwerkt en gedistribueerd naar de juiste afdelingen.
  • Epithalamus - produceert het hormoon melatonine, dat waakcycli regelt, deelneemt aan het proces van de puberteit en emoties onder controle houdt.

middenhersenen

Het reguleert in de eerste plaats de auditieve en visuele reflexactiviteit (vernauwing van de pupil bij fel licht, draai het hoofd naar een bron van hard geluid, enz.). Na verwerking in de thalamus gaat informatie naar de middenhersenen.

Hier wordt het verder verwerkt en begint het proces van waarneming, de vorming van een zinvol geluid en een optisch beeld. In dit gedeelte is oogbeweging gesynchroniseerd en is binoculair zicht verzekerd.

De middenhersenen omvatten de benen en quadlochromie (twee auditieve en twee visuele terpen). Binnenin bevindt zich de holte van de middenhersenen, die de kamers verenigt.

Medulla oblongata

Dit is een oude formatie van het zenuwstelsel. De functies van de medulla oblongata zijn voor ademhaling en hartslag. Als je dit gebied beschadigt, sterft de persoon - zuurstof stopt niet meer in het bloed, waardoor het hart niet meer pompt. In de neuronen van deze afdeling beginnen dergelijke beschermende reflexen als niezen, knipperen, hoesten en braken.

De structuur van de medulla oblongata lijkt op een langwerpige bol. Binnenin bevindt zich de kern van de grijze materie: de reticulaire formatie, de kern van verschillende schedelzenuwen, evenals neurale knopen. De piramide van de medulla oblongata, bestaande uit piramidale zenuwcellen, voert een geleidende functie uit, waarbij de hersenschors en het dorsale gebied worden gecombineerd.

De belangrijkste centra van de medulla oblongata zijn:

  • regulatie van de ademhaling
  • bloedcirculatie regelgeving
  • regulatie van een aantal functies van het spijsverteringsstelsel

Achterste hersenen: brug en cerebellum

De structuur van de achterhersenen omvat de pons en het cerebellum. De functie van de brug lijkt sterk op de naam, omdat deze voornamelijk uit zenuwvezels bestaat. De hersenbrug is in wezen een "snelweg" waardoor signalen van het lichaam naar de hersenen gaan en impulsen die van het zenuwcentrum naar het lichaam reizen. Op de stijgende manier gaat de brug van de hersenen over in de middenhersenen.

Het cerebellum heeft een veel breder scala aan mogelijkheden. De functies van het cerebellum zijn de coördinatie van lichaamsbewegingen en het behoud van evenwicht. Bovendien reguleert het cerebellum niet alleen complexe bewegingen, maar draagt ​​het ook bij aan de aanpassing van het bewegingsapparaat aan verschillende aandoeningen.

Experimenten met het gebruik van een invertoscoop (speciale bril die het beeld van de omringende wereld verandert) toonden aan dat het de functies zijn van de kleine hersenen die verantwoordelijk zijn. Niet alleen begint de persoon zich in de ruimte te oriënteren, maar hij ziet ook de wereld correct.

Anatomisch herhaalt het cerebellum de structuur van de grote hemisferen. Buiten is bedekt met een laag grijze stof, waaronder een cluster van wit.

Limbisch systeem

Limbisch systeem (van het Latijnse woord limbus - rand) wordt de reeks formaties genoemd die het bovenste deel van de stam omringen. Het systeem omvat olfactorische centra, hypothalamus, hippocampus en reticulaire formatie.

De belangrijkste functies van het limbisch systeem zijn de aanpassing van het organisme aan veranderingen en de regulatie van emoties. Deze formatie draagt ​​bij aan het creëren van blijvende herinneringen door associaties tussen geheugen en zintuiglijke ervaringen. De nauwe samenhang tussen het reukkanaal en de emotionele centra leidt ertoe dat geuren ons zulke sterke en heldere herinneringen geven.

Als je de belangrijkste functies van het limbische systeem opsomt, is het verantwoordelijk voor de volgende processen:

  1. Geur van geur
  2. mededeling
  3. Geheugen: op korte en lange termijn
  4. Rustige slaap
  5. De efficiëntie van afdelingen en organen
  6. Emoties en motivatiecomponent
  7. Intellectuele activiteit
  8. Endocrien en vegetatief
  9. Gedeeltelijk betrokken bij de vorming van voedsel en seksuele instincten

Help me alsjeblieft om te begrijpen welke divisies het menselijk brein vormen, hoe witte en grijze materie verdeeld is in zijn divisies, wat is de biologische betekenis van de kronkelige structuur van de hersenschors?

Bespaar tijd en zie geen advertenties met Knowledge Plus

Bespaar tijd en zie geen advertenties met Knowledge Plus

Het antwoord

Het antwoord is gegeven

lexaclaire

Het brein is een orgaan dat alle vitale functies van het lichaam reguleert en coördineert en het gedrag regelt. De hersenen worden bedekt door de meningen met talrijke bloedvaten. De hersenen zijn onderverdeeld in de volgende secties:
- verlengde merg
- achterste hersenen
- middenhersenen
- tussenliggende hersenen
- einde hersenen
De meeste grijze massa van de hersenen bevindt zich op het oppervlak van de hersenen en de kleine hersenen en vormt hun cortex. Het kleinere deel vormt talrijke subcorticale kernen omgeven door witte materie.
Witte materie neemt de gehele ruimte in beslag tussen de grijze materie van de hersenschors en de basale kernen.
Door de structuur neemt het oppervlak van de cortex toe, ondanks het kleine volume van de schedel.

Verbind Knowledge Plus voor toegang tot alle antwoorden. Snel, zonder reclame en onderbrekingen!

Mis het belangrijke niet - sluit Knowledge Plus aan om het antwoord nu te zien.

Bekijk de video om toegang te krijgen tot het antwoord

Oh nee!
Response Views zijn voorbij

Verbind Knowledge Plus voor toegang tot alle antwoorden. Snel, zonder reclame en onderbrekingen!

Mis het belangrijke niet - sluit Knowledge Plus aan om het antwoord nu te zien.

Welke divisies is het menselijk brein. hersenen

HUMAN BRAIN, het orgaan dat alle vitale functies van het lichaam coördineert en regelt en het gedrag regelt. Al onze gedachten, gevoelens, sensaties, verlangens en bewegingen worden geassocieerd met het werk van de hersenen, en als het niet functioneert, gaat de persoon in een vegetatieve toestand: het vermogen tot enige acties, gewaarwordingen of reacties op externe invloeden is verloren. Dit artikel concentreert zich op het menselijk brein, complexer en beter georganiseerd dan het brein van dieren. Er zijn echter significante overeenkomsten in de structuur van het menselijk brein en andere zoogdieren, zoals inderdaad de meeste gewervelde soorten.

Het geluid dat alleen wordt waargenomen door mensen onder de leeftijd van 20 jaar. De verklaring is heel eenvoudig: wanneer iemand zijn hoge leeftijd bereikt, verliezen ze het vermogen om het geluid van hogere tonen te horen, zodat alleen mensen onder de 20 ze kunnen waarnemen.

Ian Purkinje, de grondlegger van de moderne neurowetenschappen, ontdekte een interessante hallucinatie in de kindertijd. Hij sloot zijn ogen en leunde tegen de zon en begon zijn hand heen en weer te bewegen van het gezicht naar de zon. Na een paar minuten werd opgemerkt dat verschillende kleurrijke vormen die zich vermenigvuldigen en complexer worden, kunnen worden gezien.

De MENSELIJKE HERSENEN worden gekenmerkt door een hoge ontwikkeling van de grote hemisferen; ze vormen meer dan twee derde van de massa en bieden dergelijke mentale functies als denken, leren, geheugen. Andere grote hersenstructuren worden op deze doorsnede getoond: de kleine hersenen, de medulla, de pons en de middenhersenen.

Het centrale zenuwstelsel (CZS) bestaat uit de hersenen en het ruggenmerg. Het wordt geassocieerd met verschillende delen van het lichaam door perifere zenuwen - motorisch en sensorisch. Zie ook ZENUWSTELSEL.

Deze stimulatie creëert een kortsluiting in de visuele cortex van de hersenen, cellen beginnen op een onvoorspelbare manier te ontbranden, wat leidt tot het verschijnen van denkbeeldige beelden. Kijk naar het middelpunt van zwart en wit gedurende ten minste 30 seconden, kijk dan naar de muur en zie een lichtpuntje.

Kijk naar de rode ogen van de papegaai tot het nummer 20 is en kijk dan snel naar het vierkant van de lege cel. Je zou een vaag beeld van een groenblauwe vogel moeten zien. Als je hetzelfde doet, maar met een groene vogel, verschijnt er een afbeelding van een andere paarse vogel in de kooi.

De hersenen hebben een symmetrische structuur, zoals de meeste andere delen van het lichaam. Bij de geboorte is het gewicht ongeveer 0,3 kg, terwijl bij een volwassene het ongeveer. 1,5 kg. Bij extern onderzoek van de hersenen trekken twee grote hemisferen die de diepere formaties verbergen de aandacht. Het oppervlak van de hemisferen is bedekt met groeven en windingen die het oppervlak van de cortex (buitenste laag van de hersenen) vergroten. Achter het cerebellum wordt geplaatst, waarvan het oppervlak dunner gesneden is. Onder de grote hemisferen bevindt zich de hersenstam, die in het ruggenmerg overgaat. Zenuwen verlaten de romp en het ruggenmerg, waarlangs informatie van de interne en externe receptoren naar de hersenen stroomt, en signalen naar de spieren en klieren stromen in de tegenovergestelde richting. 12 paar craniale zenuwen bewegen weg van de hersenen.

Trauma bij kinderen beïnvloedt witte stof

Het is gebleken dat in het geval van volwassenen die gewelddadig kindermisbruik hebben ervaren, de zenuwverbindingen in het hersengebied die verband houden met emoties, aandacht en andere cognitieve processen, cruciale gevolgen hebben. Eerdere studies hebben aangetoond dat mensen die lijden aan kinderachteloosheid en misbruik onderhevig zijn aan een afname van witte stof in verschillende delen van de hersenen. Witte stof bestaat uit myeline-axonen, die projecties zijn van zenuwcellen die elektrische impulsen toestaan ​​om te bewegen en informatie door te geven, terwijl myeline gedeelten van deze cellen uitscheidt.

In de hersenen wordt grijze stof onderscheiden, voornamelijk bestaande uit de lichamen van zenuwcellen en de vorming van de cortex, en witte stof - de zenuwvezels die de geleidende paden (traktaatjes) vormen die verschillende delen van de hersenen verbinden, en ook zenuwen vormen die verder gaan dan het centrale zenuwstelsel en gaan naar verschillende orgels.

De hersenen en het ruggenmerg worden beschermd door botkassen - de schedel en de wervelkolom. Tussen de substantie van de hersenen en de benige wanden bevinden zich drie schillen: de buitenste - de dura mater, de innerlijke - de zachte, en tussen hen - de dunne arachnoïde. De ruimte tussen de membranen is gevuld met cerebrospinale (cerebrospinale) vloeistof, die qua samenstelling overeenkomt met bloedplasma, geproduceerd in de intracerebrale holtes (ventrikels van de hersenen) en circuleert in de hersenen en het ruggenmerg, en voorziet het van voedingsstoffen en andere factoren die noodzakelijk zijn voor vitale activiteit.

Milin helpt deze elektrische impulsen sneller te stromen door efficiënte informatieoverdracht te bieden. Het volume en de structuur van witte stof correleren met het vermogen van mensen om te leren, en dit onderdeel van de hersenen ontwikkelt zich tijdens de vroege volwassenheid, in tegenstelling tot grijze materie.

Mensen die tijdens hun kindertijd mishandeld werden, hadden een dunner laag myeline in een hoog percentage zenuwvezels. De onderzoekers merkten ook op dat abnormale moleculaire ontwikkeling specifiek de cellen beïnvloedt die betrokken zijn bij de productie en het onderhoud van myeline.

Bloedtoevoer naar de hersenen wordt voornamelijk geleverd door de halsslagaders; aan de basis van de hersenen zijn ze verdeeld in grote takken die naar de verschillende secties gaan. Hoewel het hersengewicht slechts 2,5% van het lichaamsgewicht is, ontvangt het constant, dag en nacht, 20% van het bloed dat in het lichaam circuleert en dienovereenkomstig zuurstof. De energiereserves van de hersenen zelf zijn extreem klein, dus het is uiterst afhankelijk van de toevoer van zuurstof. Er zijn beschermende mechanismen die de bloedstroom in de hersenen kunnen ondersteunen in geval van bloeding of letsel. Een kenmerk van de cerebrale circulatie is ook de aanwezigheid van zogenaamde. bloed-hersenbarrière. Het bestaat uit verschillende membranen, die de doorlaatbaarheid van de vaatwanden en de stroom van veel verbindingen van het bloed naar de substantie van de hersenen beperken; dus deze barrière voert beschermende functies uit. Veel medicinale stoffen dringen er bijvoorbeeld niet doorheen.

Ook beïnvloedde de communicatie van sleutelgebieden van de hersenen. De onderzoekers merkten dat de aangetaste axons ongewoon dik waren. Er wordt aangenomen dat deze specifieke veranderingen een negatieve invloed kunnen hebben op de verbinding tussen de voorste cortex van de staart, het hersengebied dat betrokken is bij de verwerking van emoties en cognitief functioneren, en verwante hersengebieden. Deze gelieerde gebieden omvatten de amygdala, die een sleutelrol speelt bij het reguleren van emoties, en de kernrust, die deelneemt aan het beloningssysteem van de hersenen.

Dit kan verklaren waarom mensen die zijn misbruikt in het kinderproces verschillende emoties ervaren en onderhevig zijn aan negatieve gevolgen voor de geestelijke gezondheid, evenals misbruik van psychoactieve stoffen. Natuurlijk heb je gehoord dat de hersenen honderd miljard neuronen zijn. Maar waar komt dit nummer vandaan?

CNS-cellen worden neuronen genoemd; hun functie is informatieverwerking. In het menselijk brein van 5 tot 20 miljard neuronen. De structuur van de hersenen omvat ook gliacellen, er zijn ongeveer 10 keer meer dan neuronen. Glia vult de ruimte tussen de neuronen, vormt het ondersteunende raamwerk van het zenuwweefsel en voert ook metabole en andere functies uit.

Neuronen zijn het belangrijkste bouwmateriaal van elk zenuwstelsel - stenen. Dit is een specifieke cel, takken van een boomtak, in contact met dezelfde basis van naburige cellen en vormt een enorm netwerk, dat is ons brein, verwerkt milieu-informatie, controleert onze acties en bestuurt zelfs onbewuste lichaamsfuncties. Het is het neurale brein dat verschillende acties sneller en efficiënter uitvoert dan welke machine dan ook. Gezien de onmisbare aard van deze cellen, kunnen we ervan uitgaan dat wetenschappers het exacte aantal van hun doelen kennen.

ZENUWKETEN van de hersenen zenden impulsen uit het axon van de ene cel naar de dendriet van een andere door een zeer smalle synaptische kloof; Deze overdracht gebeurt via chemische neurotransmitters.

Het neuron is, net als alle andere cellen, omgeven door een semi-permeabel (plasma) membraan. Twee soorten processen vertrekken van een cellichaam - dendrieten en axons. De meeste neuronen hebben veel vertakkende dendrieten, maar slechts één axon. Dendrieten zijn meestal erg kort, terwijl de lengte van het axon varieert van enkele centimeters tot enkele meters. Het lichaam van het neuron bevat de kern en andere organellen, hetzelfde als in andere cellen van het lichaam (zie ook CELL).

Met behulp van neurowetenschappelijke boeken of wetenschappelijke tijdschriften, zult u merken dat er meestal een goed rond cijfer van 100 miljard is. Het blijkt dat het gemiddelde menselijke brein ongeveer 86 miljard neuronen heeft, maar ze hebben in geen van de hersenen 100 miljard gevonden. Misschien zou het 14 miljard dollar kunnen zijn. neuronen - niet zozeer een groot verschil. Maar het zijn de hersenen van de baviaan of de hersenen van de helft van de gorilla, dus het verschil is niet zo klein.

Zoogdieren, zoals primaten en walvissen, zoals dolfijnen, hebben meer hersenen dan, laten we zeggen, een insect, en worden gekenmerkt door wat als verhoudingsgewijs groot in mentale vermogens kan worden beschouwd. De conclusie is dus dat de hersengrootte een goede indicator is voor het cognitieve vermogen. De regel 'meer betekent beter' wordt echter vernietigd door verschillende typen mensen te vergelijken. Het brein van een koe is bijvoorbeeld groter dan die van een aap, maar koeien hebben voor de meeste primaten even redelijke capaciteiten.

Zenuwimpulsen. De overdracht van informatie in de hersenen, evenals het zenuwstelsel als geheel, wordt uitgevoerd door middel van zenuwimpulsen. Ze verspreiden zich in de richting van het cellichaam naar het terminale deel van het axon, dat kan vertakken en een reeks van uitgangen vormen in contact met andere neuronen door een nauwe spleet, de synaps; overdracht van impulsen door de synaps wordt gemedieerd door chemische stoffen - neurotransmitters.

Het meest welsprekende bewijs van wat "niet langer betekent beter" is de aanpassing van de hersenen van mensen en grote zoogdieren, zoals walvissen of olifanten. Waarom werden mensen daarom niet gevangen door vossen die zes keer zo groot waren als het menselijk brein?

Deze mythe ontstond uit de tijd van Aristoteles, die in 335 voor Christus. Ons tijdperk schreef: "Van alle dieren is het menselijk brein het grootst in vergelijking met de lichaamsgrootte." Ja, de relatie van het menselijk brein tot het lichaam is enorm in vergelijking met bijvoorbeeld een olifant, maar een eenvoudige muis en zelfs enkele kleine vogels kunnen zo'n relatie baren. Wetenschappers hebben dus een complexer evaluatiesysteem ontwikkeld, bekend als encephalization-factor, dat de verhouding van de hersenen tot de lichaamsgrootte meet in vergelijking met andere dieren van vergelijkbare grootte.

Een zenuwimpuls is meestal afkomstig van dendrieten - dunne vertakkingsprocessen van een neuron die zijn gespecialiseerd in het verkrijgen van informatie van andere neuronen en deze door te geven aan het lichaam van een neuron. Op dendrieten en in een kleiner aantal zijn er duizenden synapsen op het cellichaam; het is door de axonsynapsen, die informatie van het lichaam van het neuron dragen, geeft het door aan de dendrieten van andere neuronen.

In dit geval is niet alleen het feit dat het hersenvolume toeneemt met toenemende lichaamsomvang, maar ook dat het hersenvolume niet noodzakelijkerwijs verandert in verhouding tot de toename van het lichaam. Deze menselijke factor is de grootste vergeleken met andere levende wezens op onze planeet.

Interessante feiten over het menselijk brein. Het brein is als een spier - hoe meer je traint, hoe meer het groeit. Het snelste brein ontwikkelt zich van 2 tot 11 jaar. Regelmatig bidden vertraagt ​​het ademen en normaliseren van hersengolven, wat nuttig is voor zelfgenezing van het lichaam. Getrouwe mensen bezoeken 36% van hun arts. minder vaak dan anderen.

Het uiteinde van het axon, dat het presynaptische deel van de synaps vormt, bevat kleine blaasjes met een neurotransmitter. Wanneer de impuls het presynaptische membraan bereikt, wordt de neurotransmitter uit het blaasje vrijgegeven in de synaptische kloof. Het einde van een axon bevat slechts één type neurotransmitter, vaak in combinatie met één of meerdere typen neuromodulatoren (zie hieronder Brain Neurochemistry).

Hoe hoger opgeleid iemand, hoe minder waarschijnlijk een hersenziekte. Intellectuele activiteit stimuleert de groei van overtollig weefsel, wat de ongesteldheid compenseert. Het doen van nieuwe, ongewone activiteiten is de beste manier om de hersenen te ontwikkelen. Communiceren met mensen met een hogere intelligentie is ook een geweldig hulpmiddel voor de ontwikkeling van de hersenen.

'S Werelds grootste hersendonor is de Mandatsky Order of Monastic Teachers. Ongeveer negentigduizend eenheden van de hersenen schonken de wil van de vrouw. Creighton Carvel was het meest unieke fotografische geheugen: hij staarde gewoon naar de reeks van zes kaarten van brandhout.

De neurotransmitter die vrijkomt uit het axon presynaptische membraan bindt aan receptoren op de dendrieten van het postsynaptische neuron. De hersenen maken gebruik van verschillende neurotransmitters, die elk worden geassocieerd met de specifieke receptor.

De receptoren op de dendrieten zijn verbonden met kanalen in een semi-permeabel postsynaptisch membraan dat de beweging van ionen door het membraan regelt. In rust heeft het neuron een elektrisch potentiaal van 70 millivolt (rustpotentiaal), terwijl de binnenzijde van het membraan negatief geladen is ten opzichte van de buitenzijde. Hoewel er verschillende mediatoren zijn, hebben ze allemaal een stimulerend of remmend effect op het postsynaptische neuron. Het stimulerende effect wordt gerealiseerd door de stroom van bepaalde ionen, voornamelijk natrium en kalium, door het membraan te verhogen. Als gevolg hiervan neemt de negatieve lading van het binnenoppervlak af - depolarisatie treedt op. Het remmende effect treedt hoofdzakelijk op door een verandering in de stroom van kalium en chloride, als resultaat wordt de negatieve lading van het binnenoppervlak groter dan in rust, en treedt hyperpolarisatie op.

Meestal gebruiken we 5-7% van ons leven. je hersenpotentieel. Het is moeilijk om je zelfs voor te stellen hoeveel alles zou zijn gedaan en zou zijn gevonden door een man als hij tenminste de tweede gebruikte. Voor wie we zulke reserves hebben, zijn wetenschappers nog niet tot de conclusie gekomen. Over dyslexie gesproken, we hebben het over het leesproces. Lezen is cognitief gedrag en wordt daarom door de hersenen verwerkt. Dus als we het hebben over lezen, moeten we praten over iets dat met de hersenen te maken heeft.

Maar wat is het? Onlangs is veel aandacht en interesse besteed aan hoe ruw het dyslectische brein is en hoe het werkt. Het volgende is een studie van de wetenschappelijke benadering van dyslexie, gebaseerd op mijn kennis tot nu toe. Als we de hersenen als vertrekpunt gebruiken, worden we geconfronteerd met problemen zoals.

De functie van het neuron is om alle invloeden te integreren die worden waargenomen door de synapsen op zijn lichaam en dendrieten. Omdat deze invloeden prikkelend of remmend kunnen zijn en niet in de tijd samenvallen, moet het neuron het totale effect van synaptische activiteit berekenen als een functie van de tijd. Als het exciterende effect de overhand heeft boven de remmende en de depolarisatie van het membraan de drempelwaarde overschrijdt, wordt een bepaald deel van het membraan van het neuron geactiveerd - in het gebied van de basis van zijn axon (axon tubercle). Hier ontstaat als gevolg van het openen van kanalen voor natrium- en kaliumionen een actiepotentiaal (zenuwimpuls).

De hersenen bestaan ​​uit miljarden zenuwcellen of neuronen die via de elektrochemische route met elkaar interageren. Hoewel het brein functioneert als een autonoom object, zijn er infrastructuur en subsystemen. Het is verdeeld in linker en rechter hemisferen, die worden geassocieerd met "meduloby". Bij de meeste mensen is de linkerkant verantwoordelijk voor de perceptie en productie van spraak, en speelt de rechterhemisfeer een belangrijke rol bij visueel-ruimtelijke informatie. Elk halfrond is bedekt met schors of schil met een witte substantie eronder.

De cortex bevat voornamelijk het lichaam van zenuwcellen. Witte stof bevat verbindingen. Cellen in de cortex beginnen met de diepere delen van de cortex tijdens de groei voor de geboorte. Niet alle cellen bereiken hun eindbestemming. Ze kunnen onderweg worden gegroepeerd in clusters van cellen. Deze groepen afwijkende cellen worden epitopen genoemd.

Deze potentiaal strekt zich verder uit langs het axon tot het einde ervan met een snelheid van 0,1 m / s tot 100 m / s (hoe dikker het axon, hoe hoger de geleidingssnelheid). Wanneer de actiepotentiaal het einde van het axon bereikt, wordt een ander type ionkanalen geactiveerd, afhankelijk van het potentiële verschil, calciumkanalen. Volgens hen komt calcium in het axon terecht, wat leidt tot de mobilisatie van blaasjes met de neurotransmitter, die het presynaptische membraan naderen, ermee versmelten en de neurotransmitter in de synaps loslaten.

De schors van elk halfrond is verdeeld in vier functionele gebieden: frontale, pariëtale, temporale en occipitale. Al deze gebieden zijn betrokken bij een complex leesproces, met name het temporale en occipitale gebied, evenals het gemedieerde gebied tussen hen, de pariëtale kwab.

Zenuwcellen interageren elektrochemisch met elkaar. Deze elektrische activiteit kan buiten de hersenen worden gemeten met behulp van een elektro-encefalogram en daarvan afgeleide methoden. Wat is een specialist over dyslectische hersenen? Ondanks uitgebreid wetenschappelijk onderzoek zijn er nog steeds meer vragen dan antwoorden. Recente studies hebben enig licht op dit onderwerp werpen, maar het is belangrijk om onderscheid te maken tussen responsen gerelateerd aan de structuur, anatomie van de hersenen en die gerelateerd zijn aan zijn fysiologie of functie.

Myeline- en gliacellen. Veel axonen zijn bedekt met een myeline-omhulsel, dat wordt gevormd door herhaaldelijk gedraaid membraan van gliacellen. Myeline bestaat voornamelijk uit lipiden, wat een karakteristiek uiterlijk geeft aan de witte stof van de hersenen en het ruggenmerg. Dankzij de myelineschede neemt de snelheid waarmee het actiepotentiaal langs het axon wordt uitgevoerd toe, omdat de ionen zich alleen door het axonmembraan kunnen verplaatsen op plaatsen die niet door myeline worden bedekt - de zogenaamde onderscheppingen Ranvier. Tussen onderscheppingen worden impulsen langs de myelineschede of via een elektrische kabel uitgevoerd. Omdat het openen van het kanaal en de passage van ionen er doorheen enige tijd in beslag neemt, elimineert de eliminatie van de constante opening van de kanalen en de beperking van hun omvang tot kleine membraangebieden die niet door myeline worden bedekt, de geleiding van pulsen langs het axon met ongeveer 10 keer.

Wat zijn de anatomische kenmerken van dyslectische hersenen? Ectopische cellen werden gevonden in de hersenen van alle dyslectici die werden onderzocht tijdens het anatomische onderzoeksprogramma van de Harvard University. Ze werden op veel plaatsen geïdentificeerd, maar vooral in de linker achterhoofdsknobbel en frontale kwabben, dat wil zeggen in gebieden die belangrijk zijn voor de tong.

Andere onderzoekers hebben aangetoond dat het temporale veld symmetrie vertegenwoordigt in het dyslectische brein, dat niet voorkomt in de hersenen van de meeste nondislexies. In de dyslectische hersenen zijn de cellen van het grote cellulaire systeem kleiner dan normaal. Het lijkt erop dat de twee hoofdsystemen, de grote cel en de kleine cel, betrokken zijn bij visuele perceptie. Het kleine cellulaire systeem was aangepast voor visuele perceptie van vormen en kleuren, terwijl de grote cel voor de waarneming van beweging was. Een systeem met grote cellen speelt een belangrijke rol in de snelle verandering van alleen-lezen weergaven.

Slechts een deel van gliacellen is betrokken bij de vorming van de myeline-omhulling van zenuwen (Schwann-cellen) of zenuwbanen (oligodendrocyten). Veel talrijker gliacellen (astrocyten, microgliocyten) vervullen andere functies: ze vormen het ondersteunende skelet van het zenuwweefsel, zorgen voor de metabolische behoeften en herstellen van verwondingen en infecties.

HOE DE HERSENEN WERKEN

Overweeg een eenvoudig voorbeeld. Wat gebeurt er wanneer we een potlood op tafel nemen? Het door het potlood gereflecteerde licht stelt met de lens scherp in het oog en wordt naar het netvlies gericht, waar het beeld van het potlood verschijnt; het wordt waargenomen door de corresponderende cellen, van waaruit het signaal naar de belangrijkste sensorische doorlatende kernen van de hersenen gaat, gelegen in de thalamus (visuele tuberkel), voornamelijk in dat deel dat het laterale geniculaire lichaam wordt genoemd. Er worden talrijke neuronen geactiveerd die reageren op de verdeling van licht en duisternis. Axonen van neuronen van het lateraal gebogen lichaam gaan naar de primaire visuele cortex, gelegen in de occipitale lob van de grote hemisferen. Impulsen die van de thalamus naar dit deel van de cortex komen, worden getransformeerd in een complexe reeks van ontladingen van corticale neuronen, waarvan sommige reageren op de grens tussen het potlood en de tafel, andere op de hoeken in het potloodbeeld, enz. Vanuit de primaire visuele cortex komt informatie over de axonen de associatieve visuele cortex binnen, waar patroonherkenning plaatsvindt, in dit geval een potlood. Herkenning in dit deel van de cortex is gebaseerd op eerder opgebouwde kennis van de externe contouren van objecten.

Bewegingsplanning (d.w.z. het nemen van een potlood) treedt waarschijnlijk op in de cortex van de frontale kwabben van de hersenhelften. In hetzelfde gebied van de cortex bevinden zich motorneuronen die commando's geven aan de spieren van hand en vingers. De nadering van de hand naar het potlood wordt bestuurd door het visuele systeem en door interoreceptoren die de positie van de spieren en gewrichten waarnemen, waarvan de informatie het centrale zenuwstelsel binnendringt. Wanneer we een potlood in de hand nemen, vertellen de receptoren aan de vingertoppen, die de druk waarnemen, ons of de vingers het potlood goed vasthouden en wat de moeite zou moeten zijn om het vast te houden. Als we onze naam in potlood willen schrijven, moeten we andere informatie in de hersenen activeren die deze complexere beweging biedt, en visuele controle zal helpen om de nauwkeurigheid ervan te vergroten.

In het bovenstaande voorbeeld kan worden gezien dat het uitvoeren van een vrij eenvoudige handeling uitgebreide hersengebieden omvat die zich uitstrekken van de cortex naar de subcorticale gebieden. Met meer complex gedrag in verband met spraak of denken, worden andere neurale circuits geactiveerd, die zelfs nog grotere gebieden van de hersenen bedekken.

HOOFD ONDERDELEN VAN DE HERSENEN

De hersenen kunnen worden onderverdeeld in drie hoofdonderdelen: de voorhersenen, hersenstam en de kleine hersenen. In de voorhersenen worden de hersenhelften, thalamus, hypothalamus en hypofyse (een van de belangrijkste neuro-endocriene klieren) uitgescheiden. De hersenstam bestaat uit de medulla oblongata, de pons (pons) en de middenhersenen.

De hersenhelften vormen het grootste deel van de hersenen, wat ongeveer 70% van het gewicht is bij volwassenen. Normaal zijn de hemisferen symmetrisch. Ze zijn onderling verbonden door een enorme bundel axonen (corpus callosum), die informatie-uitwisseling mogelijk maken.

Elk halfrond bestaat uit vier lobben: frontale, pariëtale, temporale en occipitale. De cortex van de frontale lobben bevat centra die de locomotorische activiteit reguleren, evenals, waarschijnlijk, plannings- en prognosecentra. In de cortex van de pariëtale lobben, achter het frontale, bevinden zich zones van lichamelijke gewaarwordingen, waaronder het tastgevoel en het gewrichts- en spiergevoel. Zijdelings naar de pariëtale kwab sluit het tijdelijke aan, waarin de primaire auditieve cortex zich bevindt, evenals de middelpunten van spraak en andere hogere functies. De achterkant van de hersenen bezet de achterhoofdskwab die zich boven het cerebellum bevindt; zijn schors bevat zones van visuele sensaties.

Gebieden van de cortex die niet direct gerelateerd zijn aan de regulatie van bewegingen of de analyse van sensorische informatie, worden associatieve cortex genoemd. In deze gespecialiseerde zones worden associatieve verbindingen gevormd tussen verschillende gebieden en delen van de hersenen en de informatie die daaruit komt, is geïntegreerd. De associatieve cortex biedt dergelijke complexe functies als leren, geheugen, spraak en denken.

De CORA van de BRAIN bedekt het oppervlak van de grote hemisferen met zijn vele groeven en windingen, waardoor het oppervlak van de cortex aanzienlijk toeneemt. Er zijn associatieve zones van de cortex, evenals sensorische en motorische cortex - gebieden waarin neutronen zijn geconcentreerd, die verschillende delen van het lichaam innerveren.

Subcorticale structuren. Onder de cortex ligt een aantal belangrijke hersenstructuren, of kernen, die clusters van neuronen zijn. Deze omvatten de thalamus, basale ganglia en hypothalamus. De thalamus is de belangrijkste zintuiglijke zendkern; hij ontvangt informatie van de zintuigen en stuurt deze op zijn beurt weer door naar de juiste delen van de sensorische cortex. Er zijn ook niet-specifieke zones die geassocieerd zijn met bijna de gehele cortex en die waarschijnlijk de processen van activering en waakzaamheid en aandacht verzorgen. De basale ganglia zijn een reeks kernen (de zogenaamde schil, een bleke bal en de caudate nucleus) die betrokken zijn bij de regulatie van gecoördineerde bewegingen (start en stop ze).

De hypothalamus is een klein gebied aan de basis van de hersenen dat onder de thalamus ligt. Rijk aan bloed is de hypothalamus een belangrijk centrum dat de homeostatische functies van het lichaam regelt. Het produceert stoffen die de synthese en afgifte van hypofysehormonen regelen (zie ook HYPOPHYSIS). In de hypothalamus bevinden zich veel kernen die specifieke functies vervullen, zoals de regulering van het watermetabolisme, de verdeling van opgeslagen vet, lichaamstemperatuur, seksueel gedrag, slaap en waakzaamheid.

De hersenstam bevindt zich aan de basis van de schedel. Het verbindt het ruggenmerg met de voorhersenen en bestaat uit de medulla oblongata, de pons, het midden en het diencephalon.

Door het middelste en tussenliggende brein, evenals door de hele stam, passeer de motorwegen die naar het ruggenmerg leiden, evenals enkele gevoelige paden van het ruggenmerg naar de overliggende delen van de hersenen. Onder de middenhersenen is een brug verbonden door zenuwvezels met het cerebellum. Het onderste deel van de romp - de medulla - passeert direct in het ruggenmerg. In de medulla oblongata bevinden zich centra die de activiteit van het hart en de ademhaling regelen, afhankelijk van externe omstandigheden, en ook de bloeddruk, maag- en darmmotiliteit regelen.

Op het niveau van de romp kruisen de paden die elk hersenhelft verbinden met het cerebellum. Daarom bestuurt elk van de hemisferen de tegenovergestelde zijde van het lichaam en wordt geassocieerd met het tegenovergestelde halfrond.

Het cerebellum bevindt zich onder de achterhoofdskwabben van de grote hemisferen. Door de paden van de brug is het verbonden met de overliggende delen van de hersenen. Het cerebellum reguleert de subtiele automatische bewegingen, waarbij de activiteit van verschillende spiergroepen wordt gecoördineerd bij het uitvoeren van stereotiepe gedragstactieken; hij controleert ook constant de positie van het hoofd, romp en ledematen, d.w.z. betrokken bij het handhaven van het evenwicht. Volgens de meest recente gegevens speelt het cerebellum een ​​zeer belangrijke rol in de vorming van motorische vaardigheden, waardoor de volgorde van bewegingen kan worden onthouden.

Andere systemen. Het limbisch systeem is een breed netwerk van onderling verbonden hersenregio's die emotionele toestanden reguleren, evenals leren en geheugen. De kernen die het limbisch systeem vormen, omvatten de amygdala en de hippocampus (opgenomen in de temporale kwab), evenals de hypothalamus en de zogenaamde kern. transparante septum (gelegen in de subcorticale gebieden van de hersenen).

De reticulaire formatie is een netwerk van neuronen die zich uitstrekken over de gehele stam tot de thalamus en verder zijn verbonden met uitgestrekte delen van de cortex. Het neemt deel aan de regulering van slaap en waakzaamheid, handhaaft de actieve toestand van de cortex en draagt ​​bij aan de aandacht voor bepaalde objecten.

BRAIN ELEKTRISCHE ACTIVITEIT

Met behulp van elektroden die op het oppervlak van het hoofd worden geplaatst of in de substantie van de hersenen worden geïntroduceerd, is het mogelijk de elektrische activiteit van de hersenen te repareren als gevolg van de ontladingen van de cellen. De registratie van de elektrische activiteit van de hersenen met elektroden op het oppervlak van de kop wordt een elektro-encefalogram (EEG) genoemd. Het staat niet toe om de ontlading van een individueel neuron te registreren. Alleen als gevolg van de gesynchroniseerde activiteit van duizenden of miljoenen neuronen, zijn opvallende oscillaties (golven) op de opgenomen curve te zien.


ELEKTRISCHE ACTIVITEIT van de hersenen wordt geregistreerd met behulp van een elektro-encefalograaf. De resulterende curven - elektro-encefalogrammen (EEG) - kunnen duiden op ontspannen waakzaamheid (alfa-golven), actieve waakzaamheid (beta-golven), slaap (delta-golven), epilepsie of een reactie op bepaalde stimuli (evoked potentials).

Met constante registratie op het EEG worden cyclische veranderingen onthuld, die het algemene activiteitenniveau van het individu weerspiegelen. In de actieve waaktoestand vangt het EEG niet-ritmische bètagolven met lage amplitude. In een staat van ontspannen waakzaamheid met gesloten ogen, overhandigen alfagolven met een frequentie van 7-12 cycli per seconde. Het voorkomen van slaap wordt aangegeven door het optreden van langzame golven met een hoge amplitude (deltagolven). Tijdens perioden van dromen verschijnen er bètagolven op het EEG en op basis van het EEG kan een verkeerde indruk worden gemaakt dat de persoon wakker is (vandaar de term 'paradoxale slaap'). Dromen gaan vaak gepaard met snelle oogbewegingen (met gesloten oogleden). Daarom wordt dromen ook slaap genoemd met snelle oogbewegingen (zie ook SLEEP). Met EEG kunt u een diagnose stellen van bepaalde hersenziekten, met name epilepsie (zie EPILEPSY).

Als u de elektrische activiteit van de hersenen registreert tijdens de actie van een bepaalde stimulus (visueel, auditief of tactiel), kunt u de zogenaamde stimulus identificeren. evoked potentials - synchrone ontladingen van een bepaalde groep neuronen, ontstaan ​​als reactie op een specifieke externe stimulus. De studie van evoked potentials maakte het mogelijk om de lokalisatie van hersenfuncties te verduidelijken, met name om de functie van spraak te koppelen aan bepaalde gebieden van de temporale en frontale kwabben. Deze studie helpt ook om de toestand van sensorische systemen bij patiënten met verminderde gevoeligheid te beoordelen.

De belangrijkste neurotransmitters van de hersenen zijn acetylcholine, norepinephrine, serotonine, dopamine, glutamaat, gamma-aminoboterzuur (GABA), endorfines en enkephalinen. Naast deze bekende stoffen werken waarschijnlijk nog een groot aantal anderen die nog niet zijn onderzocht in de hersenen. Sommige neurotransmitters werken alleen in bepaalde delen van de hersenen. Endorfinen en enkefalinen worden dus alleen aangetroffen in de paden die pijnimpulsen uitvoeren. Andere bemiddelaars, zoals glutamaat of GABA, worden op ruimere schaal verspreid.

De werking van neurotransmitters. Zoals reeds opgemerkt, veranderen neurotransmitters, die op het postsynaptische membraan inwerken, de geleidbaarheid ervan voor ionen. Vaak gebeurt dit door de activatie in het postsynaptische neuron van het tweede "mediator" -systeem, bijvoorbeeld cyclisch adenosine monofosfaat (cAMP). De werking van neurotransmitters kan worden gewijzigd onder invloed van een andere klasse van neurochemische stoffen - peptide-neuromodulatoren. Vrijgegeven door het presynaptische membraan gelijktijdig met de mediator, hebben ze het vermogen om het effect van de mediatoren op het postsynaptische membraan te versterken of anderszins te veranderen.

Het recent ontdekte endorfine-enkefaline systeem is belangrijk. Enkephalinen en endorfines zijn kleine peptiden die de geleiding van pijnimpulsen remmen door binding aan receptoren in het CZS, inclusief in de hogere zones van de cortex. Deze familie van neurotransmitters onderdrukt de subjectieve perceptie van pijn.

Psychoactieve drugs zijn stoffen die zich specifiek aan bepaalde receptoren in de hersenen kunnen binden en gedragsveranderingen kunnen veroorzaken. Identificeerde verschillende mechanismen van hun actie. Sommige beïnvloeden de synthese van neurotransmitters, anderen - op hun accumulatie en afgifte van synaptische vesicles (bijvoorbeeld, amfetamine veroorzaakt een snelle afgifte van norepinephrine). Het derde mechanisme is om te binden aan receptoren en de werking van een natuurlijke neurotransmitter te imiteren. Het effect van LSD (lyserginezuurdiethylamide) wordt bijvoorbeeld verklaard door het vermogen ervan om aan serotoninereceptoren te binden. Het vierde type geneesmiddelwerking is receptorblokkade, d.w.z. antagonisme met neurotransmitters. Dergelijke veel gebruikte antipsychotica als fenothiazinen (bijvoorbeeld chloorpromazine of aminazine) blokkeren dopaminereceptoren en verminderen daardoor het effect van dopamine op postsynaptische neuronen. Ten slotte is het laatste algemene werkingsmechanisme remming van de inactivatie van neurotransmitters (veel pesticiden voorkomen dat acetylcholine wordt geïnactiveerd).

Het is al lang bekend dat morfine (een gezuiverd opiumpapiproduct) niet alleen een uitgesproken analgetisch (pijnstillend) effect heeft, maar ook het vermogen om euforie te veroorzaken. Dat is waarom het als medicijn wordt gebruikt. De werking van morfine hangt samen met het vermogen ervan om te binden aan receptoren op het menselijke endorfine-enkefaline-systeem (zie ook DRUG). Dit is slechts een van de vele voorbeelden van het feit dat een chemische substantie van een andere biologische oorsprong (in dit geval van plantaardige oorsprong) het functioneren van de hersenen van dieren en mensen kan beïnvloeden, in wisselwerking met specifieke neurotransmittersystemen. Een ander bekend voorbeeld is curare, afgeleid van een tropische plant en in staat om acetylcholinereceptoren te blokkeren. Indianen in Zuid-Amerika hebben curare pijlpunten gesmeerd met behulp van het verlammende effect dat is geassocieerd met de blokkering van neuromusculaire transmissie.

Hersenonderzoek is om twee hoofdredenen moeilijk. Ten eerste zijn de hersenen, veilig beschermd door de schedel, niet direct toegankelijk. Ten tweede, de neuronen van de hersenen regenereren niet, dus elke interventie kan leiden tot onomkeerbare schade.

Ondanks deze moeilijkheden zijn hersenonderzoek en sommige vormen van de behandeling ervan (voornamelijk neurochirurgische interventie) al sinds de oudheid bekend. Archeologische vondsten tonen aan dat de mens al in de oudheid de schedel brak om toegang te krijgen tot de hersenen. Bijzonder intensief hersenonderzoek werd uitgevoerd tijdens perioden van oorlog, toen het mogelijk was om een ​​verscheidenheid aan hoofdletsel waar te nemen.

Hersenschade als gevolg van een blessure aan de voorkant of een blessure opgelopen in vredestijd is een soort experiment dat bepaalde delen van de hersenen vernietigt. Omdat dit de enige mogelijke vorm van een "experiment" op het menselijk brein is, waren een andere belangrijke onderzoekmethode experimenten met proefdieren. Als we de gedrags- of fysiologische gevolgen van schade aan een bepaalde hersenstructuur observeren, kan de functie ervan worden beoordeeld.

De elektrische activiteit van de hersenen bij proefdieren wordt geregistreerd met behulp van elektroden op het oppervlak van het hoofd of de hersenen of ingebracht in de substantie van de hersenen. Het is dus mogelijk om de activiteit van kleine groepen neuronen of individuele neuronen te bepalen, evenals om veranderingen in ionische fluxen over het membraan te identificeren. Met behulp van een stereotactisch apparaat waarmee je de elektrode op een specifiek punt in de hersenen kunt betreden, worden de ontoegankelijke dieptenecties ervan onderzocht.

Een andere benadering is om kleine delen van levend hersenweefsel te verwijderen, waarna het bestaan ​​ervan wordt behouden als een plakje in een voedingsmedium, of de cellen worden gescheiden en bestudeerd in celculturen. In het eerste geval kun je de interactie van neuronen verkennen, in het tweede geval de activiteit van individuele cellen.

Bij het bestuderen van de elektrische activiteit van individuele neuronen of hun groepen in verschillende gebieden van de hersenen, wordt de initiële activiteit meestal eerst geregistreerd en vervolgens wordt het effect van een of ander effect op de functie van de cellen bepaald. Volgens een andere methode wordt een elektrische impuls door de geïmplanteerde elektrode aangelegd om de dichtstbijzijnde neuronen kunstmatig te activeren. Dus je kunt de effecten van bepaalde delen van de hersenen op de andere gebieden bestuderen. Deze methode van elektrische stimulatie was nuttig bij de studie van stamactiverende systemen die door de middenhersenen gaan; het wordt ook gebruikt wanneer men probeert te begrijpen hoe de processen van leren en geheugen plaatsvinden op het synaptische niveau.

Honderd jaar geleden werd het duidelijk dat de functies van de linker en rechter hemisferen verschillend zijn. Een Franse chirurg, P. Brock, die patiënten met cerebrovasculair accident (beroerte) observeerde, ontdekte dat alleen patiënten met schade aan het linker hemisfeer leden aan een spraakstoornis. Verdere studies van de specialisatie van de hemisferen werden voortgezet met behulp van andere methoden, bijvoorbeeld EEG-registratie en evoked potentials.

In de afgelopen jaren zijn complexe technologieën gebruikt om beelden (visualisaties) van de hersenen te verkrijgen. Aldus heeft computertomografie (CT) een revolutie teweeggebracht in de klinische neurologie, waardoor het in vivo gedetailleerde (gelaagde) beeld van hersenstructuren kon worden verkregen. Een andere beeldvormingsmethode - positron emissie tomografie (PET) - geeft een beeld van de metabolische activiteit van de hersenen. In dit geval wordt een kortdurende radio-isotoop geïntroduceerd in een persoon, die zich ophoopt in verschillende delen van de hersenen, en hoe meer, hoe hoger hun metabole activiteit. Met behulp van PET werd ook aangetoond dat de spraakfuncties van de meerderheid van de onderzochte personen verband houden met de linker hemisfeer. Omdat de hersenen werken met behulp van een groot aantal parallelle structuren, biedt PET dergelijke informatie over hersenfuncties die niet kan worden verkregen met enkele elektroden.

In de regel wordt hersenonderzoek uitgevoerd met behulp van een combinatie van methoden. Bijvoorbeeld, de Amerikaanse neurobioloog R. Sperri, met werknemers, gebruikte als een behandelingsprocedure om het corpus callosum (bundel van axonen die beide hemisferen verbinden) te snijden bij sommige patiënten met epilepsie. Vervolgens werd bij deze patiënten met een "gespleten" brein de hemisferische specialisatie onderzocht. Het bleek dat voor spraak en andere logische en analytische functies de dominante dominante (meestal linker) hemisfeer verantwoordelijk is, terwijl de niet-dominante hemisfeer de ruimtelijk-temporele parameters van de externe omgeving analyseert. Dus het is geactiveerd als we naar muziek luisteren. Een mozaïekbeeld van hersenactiviteit suggereert dat er tal van gespecialiseerde gebieden zijn binnen de cortex en subcorticale structuren; de gelijktijdige activiteit van deze gebieden bevestigt het concept van de hersenen als een computerapparaat met parallelle gegevensverwerking.

Met de komst van nieuwe onderzoeksmethoden zullen ideeën over hersenfuncties waarschijnlijk veranderen. Het gebruik van apparaten die ons in staat stellen om een ​​"kaart" van de metabole activiteit van verschillende delen van de hersenen te verkrijgen, evenals het gebruik van moleculair genetische benaderingen, zou onze kennis van de processen in de hersenen moeten verdiepen. Zie ook neuropsychologie.

Bij verschillende soorten gewervelde dieren komen de hersenen opvallend veel overeen. Als we vergelijkingen maken op het niveau van neuronen, vinden we een duidelijke overeenkomst van eigenschappen zoals de gebruikte neurotransmitters, schommelingen in ionenconcentraties, celtypen en fysiologische functies. Fundamentele verschillen worden alleen onthuld in vergelijking met ongewervelde dieren. De neuronen van ongewervelde dieren zijn veel groter; vaak zijn ze niet met elkaar verbonden, maar door elektrische synapsen, die maar zelden in het menselijk brein worden aangetroffen. In het zenuwstelsel van ongewervelde dieren worden sommige neurotransmitters gedetecteerd die niet kenmerkend zijn voor gewervelde dieren.

Onder gewervelde dieren hebben verschillen in de structuur van de hersenen voornamelijk betrekking op de verhouding van de individuele structuren. Bij het beoordelen van de overeenkomsten en verschillen in de hersenen van vissen, amfibieën, reptielen, vogels, zoogdieren (inclusief mensen), kunnen verschillende algemene patronen worden afgeleid. Ten eerste hebben al deze dieren dezelfde structuur en functies van neuronen. Ten tweede lijken de structuur en functies van het ruggenmerg en de hersenstam sterk op elkaar. Ten derde gaat de evolutie van zoogdieren gepaard met een uitgesproken toename in corticale structuren die maximale ontwikkeling bereiken bij primaten. Bij amfibieën vormt de cortex slechts een klein deel van de hersenen, terwijl bij de mens het de dominante structuur is. Er wordt echter aangenomen dat de principes van het functioneren van de hersenen van alle vertebraten bijna hetzelfde zijn. De verschillen worden bepaald door het aantal interneuronverbindingen en interacties, die hoger is, hoe complexer de hersenen zijn.

De hersenen van ons lichaam zijn een zeer belangrijk en integraal onderdeel van het zenuwstelsel. Deze systeemstructuur is ingesloten in de schedelholte. Maar de hersenen kunnen niet als iets monolithisch worden beschouwd, het bestaat uit verschillende organen. Al deze organen worden in de schedel verzameld en vertegenwoordigen de totaliteit van wat we de hersenen noemen. Laten we eens goed kijken naar waar onze hersenen uit bestaan.

Groot brein. Dit brein is de meest volumetrische component van ons hele brein. Is bezig met dit lichaam, bijna de gehele schedelholte. De componenten van het grote brein zijn de twee helften. Deze helften worden de hersenhelften genoemd en worden gescheiden door een spleet die langs de hele hersenen loopt. Roland (sylvium) groef verdeelt elk van de hemisferen vanaf de zijkant. Om extreem nauwkeurig te zijn, blijkt dat het grote brein niet in twee helften verdeeld is, maar in vier delen. Deze delen worden hersenlobben genoemd. De aandelen van de hersenen hebben ook hun deling en, bijgevolg, de namen. Gepresenteerde lobben van de grote hersenen - pariëtale, frontale, occipitale en temporale. Maar afgezien van het feit dat het grote brein vier afdelingen heeft, bestaat het uit verschillende lagen. De lagen van de grote hersenen worden vertegenwoordigd door:

Grijze materie. Dit - direct, de zogenaamde hersenschors (hersenen). Deze buitenste laag wordt gevormd door zenuwcellen (de lichamen van neuronen).

Witte materie. Het is een hersenstof, van nature, die de basis vormt voor alle andere hersenweefsels. Het grootste deel van de witte stof bestaat uit processen van neuronen of dendrieten.

Corpus callosum. Dit is het lichaam van de grote hersenen, dat zich bevindt tussen de twee eerder genoemde hemisferen (links en rechts). Het corpus callosum bestaat uit verschillende kanalen met een nerveus karakter.

Ventriculaire hersenen. De ventrikels zijn onderling verbonden holten. Er zijn vier van dergelijke holtes. Door de ventrikels van de hersenen, de doorgang van hersenvocht.

Cerebellum. Het is een klein lichaam. Het cerebellum bevindt zich direct onder het occipitale deel van de hersenen. De functionele belasting van het cerebellum is om de evenwichtspositie van ons lichaam te behouden. Het is het cerebellum dat het werk coördineert van het gehele bewegingsapparaat van ons lichaam.

Hersenen brug. Dit is een hersenorgaan dat verantwoordelijk is voor het overbrengen van zenuwimpulsen die zorgen voor de werking van de motorische en sensorische functies van ons lichaam. In feite is het het verzendende centrum. De hersenbrug bevindt zich voor het cerebellum, direct onder het achterhoofdgedeelte.

Medulla oblongata. Dit orgel is als het ware een voortzetting van de brug (cerebraal). De eigenaardigheid van de medulla oblongata is dat het in de loop van zijn locatie contact maakt met het ruggenmerg. Simpel gezegd, het gaat erin. De medulla oblongata voert een aantal uiterst belangrijke functies uit voor ons lichaam. Het regelt onvrijwillige functies (ademhalingscentrum), de verordening bepaalt de frequentie van onze ademhaling. Reguleert de compressie en expansie van bloedvaten (vasomotorisch centrum), bepaalt het werk van het braakcentrum.

De functies die de hersenen uitvoeren, zijn uiterst belangrijk voor het hele lichaam. Daarom worden onze hersenen op betrouwbare wijze beschermd door de schedel (sterke botstructuur). Maar afgezien van het feit dat de hersenen worden beschermd door de botten van de schedel, zijn ook drie schelpen opgenomen in de verdediging ervan. Deze schelpen hebben namen - arachnoid, hard en zacht. De functie van deze membranen is om de hersenen te beschermen tegen direct contact met de benige structuren van de schedel. De al genoemde ventrikels van onze hersenen produceren cerebrospinale vloeistof. Deze vloeistof is een natuurlijke schokdemper voor de hersenen. (extreem belangrijk in geval van een slag op het hoofd). De hersenen onderscheiden zich ook door het feit dat het een nogal energie-intensieve structuur van ons lichaam is. Ongeveer twintig procent van alle lichaamsenergie verbruikt de hersenen.

Je Wilt Over Epilepsie