Neuronen van de hersenen - de structuur, classificatie en routes

Het centrale zenuwstelsel (CZS) bestaat uit de hersenen en het ruggenmerg. Is het verbonden met verschillende delen van het lichaam door perifere zenuwen? motor en gevoelig. Zie ook ZENUWSTELSEL.

Hersenen ?? symmetrische structuur, zoals de meeste andere delen van het lichaam. Bij de geboorte is het gewicht ongeveer 0,3 kg, terwijl bij een volwassene dit ?? ong. 1,5 kg. Bij extern onderzoek van de hersenen trekken twee grote hemisferen die de diepere formaties verbergen de aandacht. Het oppervlak van de hemisferen is bedekt met groeven en windingen die het oppervlak van de cortex (buitenste laag van de hersenen) vergroten. Achter het cerebellum wordt geplaatst, waarvan het oppervlak dunner gesneden is. Onder de grote hemisferen bevindt zich de hersenstam, die in het ruggenmerg overgaat. Zenuwen verlaten de romp en het ruggenmerg, waarlangs informatie van de interne en externe receptoren naar de hersenen stroomt, en signalen naar de spieren en klieren stromen in de tegenovergestelde richting. 12 paar craniale zenuwen bewegen weg van de hersenen.

In de hersenen wordt grijze stof onderscheiden, voornamelijk bestaande uit de lichamen van zenuwcellen en de vorming van de cortex, en witte stof? zenuwvezels die de paden (tracta's) vormen die verschillende delen van de hersenen verbinden, en ook zenuwen vormen die de grenzen van het centrale zenuwstelsel overschrijden en naar verschillende organen gaan.

Worden de hersenen en het ruggenmerg beschermd door botten? schedel en wervelkolom. Tussen de substantie van de hersenen en de beenwanden zijn drie schillen: de buitenste ?? dura mater, intern ?? zacht en tussen hen ?? dunne arachnoid shell. De ruimte tussen de membranen is gevuld met cerebrospinale (cerebrospinale) vloeistof, die qua samenstelling overeenkomt met bloedplasma, geproduceerd in de intracerebrale holtes (ventrikels van de hersenen) en circuleert in de hersenen en het ruggenmerg, en voorziet het van voedingsstoffen en andere factoren die noodzakelijk zijn voor vitale activiteit.

Bloedtoevoer naar de hersenen wordt voornamelijk geleverd door de halsslagaders; aan de basis van de hersenen zijn ze verdeeld in grote takken die naar de verschillende secties gaan. Hoewel het hersengewicht slechts 2,5% van het lichaamsgewicht is, ontvangt het constant, dag en nacht, 20% van het bloed dat in het lichaam circuleert en dienovereenkomstig zuurstof. De energiereserves van de hersenen zelf zijn extreem klein, dus het is uiterst afhankelijk van de toevoer van zuurstof. Er zijn beschermende mechanismen die de bloedstroom in de hersenen kunnen ondersteunen in geval van bloeding of letsel. Een kenmerk van de cerebrale circulatie is ook de aanwezigheid van zogenaamde. bloed-hersenbarrière. Het bestaat uit verschillende membranen, die de doorlaatbaarheid van de vaatwanden en de stroom van veel verbindingen van het bloed naar de substantie van de hersenen beperken; dus deze barrière voert beschermende functies uit. Veel medicinale stoffen dringen er bijvoorbeeld niet doorheen.

CNS-cellen worden neuronen genoemd; hun functie ?? informatieverwerking. In het menselijk brein van 5 tot 20 miljard neuronen. De structuur van de hersenen omvat ook gliacellen, er zijn ongeveer 10 keer meer dan neuronen. Glia vult de ruimte tussen de neuronen, vormt het ondersteunende raamwerk van het zenuwweefsel en voert ook metabole en andere functies uit.

Het neuron is, net als alle andere cellen, omgeven door een semi-permeabel (plasma) membraan. Twee soorten processen vertrekken van een cellichaam ?? dendrieten en axons. De meeste neuronen hebben veel vertakkende dendrieten, maar slechts één axon. Dendrieten zijn meestal erg kort, terwijl de lengte van het axon varieert van enkele centimeters tot enkele meters. Het lichaam van het neuron bevat de kern en andere organellen, hetzelfde als in andere cellen van het lichaam (zie ook CELL).

Zenuwimpulsen. De overdracht van informatie in de hersenen, evenals het zenuwstelsel als geheel, wordt uitgevoerd door middel van zenuwimpulsen. Ze verspreiden zich in de richting van het cellichaam naar het terminale deel van het axon, dat kan vertakken en een reeks eindes vormen in contact met andere neuronen door een nauwe spleet ?? synaps; de overdracht van impulsen door de synaps wordt gemedieerd door chemicaliën ?? neurotransmitters.

Zenuwimpuls komt meestal van de dendrieten ?? dunne vertakkingsprocessen van het neuron, gespecialiseerd in het verkrijgen van informatie van andere neuronen en het overbrengen ervan naar het lichaam van het neuron. Op dendrieten en in een kleiner aantal zijn er duizenden synapsen op het cellichaam; het is door de axonsynapsen, die informatie van het lichaam van het neuron dragen, geeft het door aan de dendrieten van andere neuronen.

Het uiteinde van het axon, dat het presynaptische deel van de synaps vormt, bevat kleine blaasjes met een neurotransmitter. Wanneer de impuls het presynaptische membraan bereikt, wordt de neurotransmitter uit het blaasje vrijgegeven in de synaptische kloof. Het einde van een axon bevat slechts één type neurotransmitter, vaak in combinatie met één of meerdere typen neuromodulatoren (zie hieronder Brain Neurochemistry).

De neurotransmitter die vrijkomt uit het axon presynaptische membraan bindt aan receptoren op de dendrieten van het postsynaptische neuron. De hersenen maken gebruik van verschillende neurotransmitters, die elk worden geassocieerd met de specifieke receptor.

De receptoren op de dendrieten zijn verbonden met kanalen in een semi-permeabel postsynaptisch membraan dat de beweging van ionen door het membraan regelt. In rust heeft het neuron een elektrisch potentiaal van 70 millivolt (rustpotentiaal), terwijl de binnenzijde van het membraan negatief geladen is ten opzichte van de buitenzijde. Hoewel er verschillende mediatoren zijn, hebben ze allemaal een stimulerend of remmend effect op het postsynaptische neuron. Het stimulerende effect wordt gerealiseerd door de stroom van bepaalde ionen, voornamelijk natrium en kalium, door het membraan te verhogen. Als gevolg hiervan neemt de negatieve lading van het binnenoppervlak af ?? depolarisatie optreedt. Het remmende effect treedt hoofdzakelijk op door een verandering in de stroom van kalium en chloride, als resultaat wordt de negatieve lading van het binnenoppervlak groter dan in rust, en treedt hyperpolarisatie op.

De functie van het neuron is om alle invloeden te integreren die worden waargenomen door de synapsen op zijn lichaam en dendrieten. Omdat deze invloeden prikkelend of remmend kunnen zijn en niet in de tijd samenvallen, moet het neuron het totale effect van synaptische activiteit berekenen als een functie van de tijd. Als het exciterende effect de overhand heeft boven de remmende en membraandepolarisatie overschrijdt de drempelwaarde, activeert een bepaald deel van het membraan van het neuron? in de regio van de basis van zijn axon (axon tubercle). Hier ontstaat als gevolg van het openen van kanalen voor natrium- en kaliumionen een actiepotentiaal (zenuwimpuls).

Deze potentiaal strekt zich verder uit langs het axon tot het einde ervan met een snelheid van 0,1 m / s tot 100 m / s (hoe dikker het axon, hoe hoger de geleidingssnelheid). Wanneer de actiepotentiaal het einde van het axon bereikt, wordt een ander type ionenkanaal geactiveerd, afhankelijk van het potentiële verschil? calcium kanalen. Volgens hen komt calcium in het axon terecht, wat leidt tot de mobilisatie van blaasjes met de neurotransmitter, die het presynaptische membraan naderen, ermee versmelten en de neurotransmitter in de synaps loslaten.

Myeline- en gliacellen. Veel axonen zijn bedekt met een myeline-omhulsel, dat wordt gevormd door herhaaldelijk gedraaid membraan van gliacellen. Myeline bestaat voornamelijk uit lipiden, wat een karakteristiek uiterlijk geeft aan de witte stof van de hersenen en het ruggenmerg. Dankzij de myelineschede neemt de snelheid van het actiepotentiaal langs het axon toe, omdat de ionen zich alleen door plaatsen op het axonmembraan op plaatsen die niet door myeline worden bedekt, ?? de zogenaamde onderscheppingen Ranvier. Tussen onderscheppingen worden impulsen langs de myelineschede of via een elektrische kabel uitgevoerd. Omdat het openen van het kanaal en de passage van ionen er doorheen enige tijd in beslag neemt, elimineert de eliminatie van de constante opening van de kanalen en de beperking van hun omvang tot kleine membraangebieden die niet door myeline worden bedekt, de geleiding van pulsen langs het axon met ongeveer 10 keer.

Slechts een deel van gliacellen is betrokken bij de vorming van de myeline-omhulling van zenuwen (Schwann-cellen) of zenuwbanen (oligodendrocyten). Veel talrijker gliacellen (astrocyten, microgliocyten) vervullen andere functies: ze vormen het ondersteunende skelet van het zenuwweefsel, zorgen voor de metabolische behoeften en herstellen van verwondingen en infecties.

Overweeg een eenvoudig voorbeeld. Wat gebeurt er wanneer we een potlood op tafel nemen? Het door het potlood gereflecteerde licht stelt met de lens scherp in het oog en wordt naar het netvlies gericht, waar het beeld van het potlood verschijnt; het wordt waargenomen door de corresponderende cellen, van waaruit het signaal naar de belangrijkste sensorische doorlatende kernen van de hersenen gaat, gelegen in de thalamus (visuele tuberkel), voornamelijk in dat deel dat het laterale geniculaire lichaam wordt genoemd. Er worden talrijke neuronen geactiveerd die reageren op de verdeling van licht en duisternis. Axonen van neuronen van het lateraal gebogen lichaam gaan naar de primaire visuele cortex, gelegen in de occipitale lob van de grote hemisferen. Impulsen die van de thalamus naar dit deel van de cortex komen, worden getransformeerd in een complexe reeks van ontladingen van corticale neuronen, waarvan sommige reageren op de grens tussen het potlood en de tafel, andere ?? op de hoeken in het potloodbeeld, enz. Vanuit de primaire visuele cortex komt informatie over de axonen de associatieve visuele cortex binnen, waar patroonherkenning plaatsvindt, in dit geval een potlood. Herkenning in dit deel van de cortex is gebaseerd op eerder opgebouwde kennis van de externe contouren van objecten.

Bewegingsplanning (d.w.z. het nemen van een potlood) treedt waarschijnlijk op in de cortex van de frontale kwabben van de hersenhelften. In hetzelfde gebied van de cortex bevinden zich motorneuronen die commando's geven aan de spieren van hand en vingers. De nadering van de hand naar het potlood wordt bestuurd door het visuele systeem en door interoreceptoren die de positie van de spieren en gewrichten waarnemen, waarvan de informatie het centrale zenuwstelsel binnendringt. Wanneer we een potlood in de hand nemen, vertellen de receptoren aan de vingertoppen, die de druk waarnemen, ons of de vingers het potlood goed vasthouden en wat de moeite zou moeten zijn om het vast te houden. Als we onze naam in potlood willen schrijven, moeten we andere informatie in de hersenen activeren die deze complexere beweging biedt, en visuele controle zal helpen om de nauwkeurigheid ervan te vergroten.

In het bovenstaande voorbeeld kan worden gezien dat het uitvoeren van een vrij eenvoudige handeling uitgebreide hersengebieden omvat die zich uitstrekken van de cortex naar de subcorticale gebieden. Met meer complex gedrag in verband met spraak of denken, worden andere neurale circuits geactiveerd, die zelfs nog grotere gebieden van de hersenen bedekken.

De hersenen kunnen worden onderverdeeld in drie hoofdonderdelen: de voorhersenen, hersenstam en de kleine hersenen. In de voorhersenen worden de hersenhelften, thalamus, hypothalamus en hypofyse (een van de belangrijkste neuro-endocriene klieren) uitgescheiden. De hersenstam bestaat uit de medulla oblongata, de pons (pons) en de middenhersenen.

Groot halfrond ?? het grootste deel van de hersenen bij volwassenen is ongeveer 70% van zijn gewicht. Normaal zijn de hemisferen symmetrisch. Ze zijn onderling verbonden door een enorme bundel axonen (corpus callosum), die informatie-uitwisseling mogelijk maken.

Elk halfrond bestaat uit vier lobben: frontale, pariëtale, temporale en occipitale. De cortex van de frontale lobben bevat centra die de locomotorische activiteit reguleren, evenals, waarschijnlijk, plannings- en prognosecentra. In de cortex van de pariëtale lobben, achter het frontale, bevinden zich zones van lichamelijke gewaarwordingen, waaronder het tastgevoel en het gewrichts- en spiergevoel. Zijdelings naar de pariëtale kwab sluit het tijdelijke aan, waarin de primaire auditieve cortex zich bevindt, evenals de middelpunten van spraak en andere hogere functies. De achterkant van de hersenen bezet de achterhoofdskwab die zich boven het cerebellum bevindt; zijn schors bevat zones van visuele sensaties.

Gebieden van de cortex die niet direct gerelateerd zijn aan de regulatie van bewegingen of de analyse van sensorische informatie, worden associatieve cortex genoemd. In deze gespecialiseerde zones worden associatieve verbindingen gevormd tussen verschillende gebieden en delen van de hersenen en de informatie die daaruit komt, is geïntegreerd. De associatieve cortex biedt dergelijke complexe functies als leren, geheugen, spraak en denken.

Subcorticale structuren. Onder de cortex ligt een aantal belangrijke hersenstructuren, of kernen, die clusters van neuronen zijn. Deze omvatten de thalamus, basale ganglia en hypothalamus. Thalamus ?? dit is de belangrijkste zintuiglijke zendkern; hij ontvangt informatie van de zintuigen en stuurt deze op zijn beurt weer door naar de juiste delen van de sensorische cortex. Er zijn ook niet-specifieke zones die geassocieerd zijn met bijna de gehele cortex en die waarschijnlijk de processen van activering en waakzaamheid en aandacht verzorgen. De basale ganglia ?? Dit is een set kernen (de zogenaamde shell, bleke bal en caudate nucleus), die deelnemen aan de regulatie van gecoördineerde bewegingen (start en stop ze).

Hypothalamus ?? een klein gebied aan de basis van de hersenen, onder de thalamus. Rijk aan bloed, hypothalamus ?? een belangrijk centrum dat de homeostatische functies van het lichaam regelt. Het produceert stoffen die de synthese en afgifte van hypofysehormonen regelen (zie ook HYPOPHYSIS). In de hypothalamus bevinden zich veel kernen die specifieke functies vervullen, zoals de regulering van het watermetabolisme, de verdeling van opgeslagen vet, lichaamstemperatuur, seksueel gedrag, slaap en waakzaamheid.

De hersenstam bevindt zich aan de basis van de schedel. Het verbindt het ruggenmerg met de voorhersenen en bestaat uit de medulla oblongata, de pons, het midden en het diencephalon.

Door het middelste en tussenliggende brein, evenals door de hele stam, passeer de motorwegen die naar het ruggenmerg leiden, evenals enkele gevoelige paden van het ruggenmerg naar de overliggende delen van de hersenen. Onder de middenhersenen is een brug verbonden door zenuwvezels met het cerebellum. Het laagste deel van de kofferbak ?? merg ?? gaat direct in de ruggengraat. In de medulla oblongata bevinden zich centra die de activiteit van het hart en de ademhaling regelen, afhankelijk van externe omstandigheden, en ook de bloeddruk, maag- en darmmotiliteit regelen.

Op het niveau van de romp kruisen de paden die elk hersenhelft verbinden met het cerebellum. Daarom bestuurt elk van de hemisferen de tegenovergestelde zijde van het lichaam en is verbonden met de tegenovergestelde halfrond van het cerebellum.

Het cerebellum bevindt zich onder de achterhoofdskwabben van de grote hemisferen. Door de paden van de brug is het verbonden met de overliggende delen van de hersenen. Het cerebellum reguleert de subtiele automatische bewegingen, waarbij de activiteit van verschillende spiergroepen wordt gecoördineerd bij het uitvoeren van stereotiepe gedragstactieken; hij controleert ook constant de positie van het hoofd, romp en ledematen, d.w.z. betrokken bij het handhaven van het evenwicht. Volgens de meest recente gegevens speelt het cerebellum een ​​zeer belangrijke rol in de vorming van motorische vaardigheden, waardoor de volgorde van bewegingen kan worden onthouden.

Andere systemen. Limbisch systeem ?? een breed netwerk van onderling verbonden hersengebieden die emotionele toestanden reguleren, evenals leren en geheugen. De kernen die het limbisch systeem vormen, omvatten de amygdala en de hippocampus (opgenomen in de temporale kwab), evenals de hypothalamus en de zogenaamde kern. transparante septum (gelegen in de subcorticale gebieden van de hersenen).

Reticulaire formatie ?? een netwerk van neuronen die zich uitstrekken over de hele stam tot de thalamus en verder verbonden zijn met uitgestrekte delen van de cortex. Het neemt deel aan de regulering van slaap en waakzaamheid, handhaaft de actieve toestand van de cortex en draagt ​​bij aan de aandacht voor bepaalde objecten.

Met behulp van elektroden die op het oppervlak van het hoofd worden geplaatst of in de substantie van de hersenen worden geïntroduceerd, is het mogelijk de elektrische activiteit van de hersenen te repareren als gevolg van de ontladingen van de cellen. De registratie van de elektrische activiteit van de hersenen met elektroden op het oppervlak van de kop wordt een elektro-encefalogram (EEG) genoemd. Het staat niet toe om de ontlading van een individueel neuron te registreren. Alleen als gevolg van de gesynchroniseerde activiteit van duizenden of miljoenen neuronen, zijn opvallende oscillaties (golven) op de opgenomen curve te zien.

Met constante registratie op het EEG worden cyclische veranderingen onthuld, die het algemene activiteitenniveau van het individu weerspiegelen. In de actieve waaktoestand vangt het EEG niet-ritmische bètagolven met lage amplitude. In een toestand van ontspannen waakzaamheid met gesloten ogen, hebben alfagolven met een frequentie van 7-12 cycli per seconde de overhand. Het voorkomen van slaap wordt aangegeven door het optreden van langzame golven met een hoge amplitude (deltagolven). Tijdens perioden van dromen verschijnen er bètagolven op het EEG en op basis van het EEG kan een verkeerde indruk worden gemaakt dat de persoon wakker is (vandaar de term 'paradoxale slaap'). Dromen gaan vaak gepaard met snelle oogbewegingen (met gesloten oogleden). Daarom wordt dromen ook slaap genoemd met snelle oogbewegingen (zie ook SLEEP). Met EEG kunt u een diagnose stellen van bepaalde hersenziekten, met name epilepsie (zie EPILEPSY).

Als u de elektrische activiteit van de hersenen registreert tijdens de actie van een bepaalde stimulus (visueel, auditief of tactiel), kunt u de zogenaamde stimulus identificeren. evoked potentials ?? synchrone ontladingen van een bepaalde groep neuronen die ontstaan ​​als reactie op een specifieke externe stimulus. De studie van evoked potentials maakte het mogelijk om de lokalisatie van hersenfuncties te verduidelijken, met name om de functie van spraak te koppelen aan bepaalde gebieden van de temporale en frontale kwabben. Deze studie helpt ook om de toestand van sensorische systemen bij patiënten met verminderde gevoeligheid te beoordelen.

De belangrijkste neurotransmitters van de hersenen zijn acetylcholine, norepinephrine, serotonine, dopamine, glutamaat, gamma-aminoboterzuur (GABA), endorfines en enkephalinen. Naast deze bekende stoffen werken waarschijnlijk nog een groot aantal anderen die nog niet zijn onderzocht in de hersenen. Sommige neurotransmitters werken alleen in bepaalde delen van de hersenen. Endorfinen en enkefalinen worden dus alleen aangetroffen in de paden die pijnimpulsen uitvoeren. Andere bemiddelaars, zoals glutamaat of GABA, worden op ruimere schaal verspreid.

De werking van neurotransmitters. Zoals reeds opgemerkt, veranderen neurotransmitters, die op het postsynaptische membraan inwerken, de geleidbaarheid ervan voor ionen. Vaak gebeurt dit door de activatie in het postsynaptische neuron van het tweede "mediator" -systeem, bijvoorbeeld cyclisch adenosine monofosfaat (cAMP). De werking van neurotransmitters kan worden gewijzigd onder invloed van een andere klasse neurochemische stoffen ?? peptide neuromodulatoren. Vrijgegeven door het presynaptische membraan gelijktijdig met de mediator, hebben ze het vermogen om het effect van de mediatoren op het postsynaptische membraan te versterken of anderszins te veranderen.

Het recent ontdekte endorfine-enkefaline systeem is belangrijk. Enkephalinen en endorfinen ?? kleine peptiden die de geleiding van pijnimpulsen remmen door binding aan receptoren in het centrale zenuwstelsel, inclusief in de hogere zones van de cortex. Deze familie van neurotransmitters onderdrukt de subjectieve perceptie van pijn.

Psychoactieve drugs ?? stoffen die specifiek aan bepaalde receptoren in de hersenen kunnen binden en gedragsveranderingen kunnen veroorzaken. Identificeerde verschillende mechanismen van hun actie. Sommigen beïnvloeden de synthese van neurotransmitters, andere ?? op hun accumulatie en afgifte van synaptische vesicles (amfetamine veroorzaakt bijvoorbeeld een snelle afgifte van norepinephrine). Het derde mechanisme is om te binden aan receptoren en de werking van een natuurlijke neurotransmitter te imiteren. Het effect van LSD (lyserginezuurdiethylamide) wordt bijvoorbeeld verklaard door het vermogen ervan om aan serotoninereceptoren te binden. Het vierde type actie drugs ?? receptorblokkade, d.w.z. antagonisme met neurotransmitters. Dergelijke veel gebruikte antipsychotica als fenothiazinen (bijvoorbeeld chloorpromazine of aminazine) blokkeren dopaminereceptoren en verminderen daardoor het effect van dopamine op postsynaptische neuronen. Eindelijk de laatste van de gemeenschappelijke werkingsmechanismen ?? remming van inactivatie van neurotransmitters (veel pesticiden voorkomen acetylcholine-inactivatie).

Het is al lang bekend dat morfine (een gezuiverd opiumpapiproduct) niet alleen een uitgesproken analgetisch (pijnstillend) effect heeft, maar ook het vermogen om euforie te veroorzaken. Dat is waarom het als medicijn wordt gebruikt. De werking van morfine hangt samen met het vermogen ervan om te binden aan receptoren op het menselijke endorfine-enkefaline-systeem (zie ook DRUG). Dit is slechts een van de vele voorbeelden van het feit dat een chemische substantie van een andere biologische oorsprong (in dit geval van plantaardige oorsprong) het functioneren van de hersenen van dieren en mensen kan beïnvloeden, in wisselwerking met specifieke neurotransmittersystemen. Nog een bekend voorbeeld ?? curare, afgeleid van een tropische plant en in staat om acetylcholinereceptoren te blokkeren. Indianen in Zuid-Amerika hebben curare pijlpunten gesmeerd met behulp van het verlammende effect dat is geassocieerd met de blokkering van neuromusculaire transmissie.

Hersenonderzoek is om twee hoofdredenen moeilijk. Ten eerste zijn de hersenen, veilig beschermd door de schedel, niet direct toegankelijk. Ten tweede, de neuronen van de hersenen regenereren niet, dus elke interventie kan leiden tot onomkeerbare schade.

Ondanks deze moeilijkheden zijn hersenonderzoek en sommige vormen van de behandeling ervan (voornamelijk neurochirurgische interventie) al sinds de oudheid bekend. Archeologische vondsten tonen aan dat de mens al in de oudheid de schedel brak om toegang te krijgen tot de hersenen. Bijzonder intensief hersenonderzoek werd uitgevoerd tijdens perioden van oorlog, toen het mogelijk was om een ​​verscheidenheid aan hoofdletsel waar te nemen.

Schade aan de hersenen als gevolg van een blessure aan de voorkant of letsel opgelopen in vredestijd, ?? een soort van experiment waarbij bepaalde delen van de hersenen worden vernietigd. Omdat dit de enige mogelijke vorm van een "experiment" op het menselijk brein is, waren een andere belangrijke onderzoekmethode experimenten met proefdieren. Als we de gedrags- of fysiologische gevolgen van schade aan een bepaalde hersenstructuur observeren, kan de functie ervan worden beoordeeld.

De elektrische activiteit van de hersenen bij proefdieren wordt geregistreerd met behulp van elektroden op het oppervlak van het hoofd of de hersenen of ingebracht in de substantie van de hersenen. Het is dus mogelijk om de activiteit van kleine groepen neuronen of individuele neuronen te bepalen, evenals om veranderingen in ionische fluxen over het membraan te identificeren. Met behulp van een stereotactisch apparaat waarmee je de elektrode op een specifiek punt in de hersenen kunt betreden, worden de ontoegankelijke dieptenecties ervan onderzocht.

Een andere benadering is om kleine delen van levend hersenweefsel te verwijderen, waarna het bestaan ​​ervan wordt behouden als een plakje in een voedingsmedium, of de cellen worden gescheiden en bestudeerd in celculturen. In het eerste geval kun je de interactie van neuronen verkennen, in de tweede? vitale activiteit van individuele cellen.

Bij het bestuderen van de elektrische activiteit van individuele neuronen of hun groepen in verschillende gebieden van de hersenen, wordt de initiële activiteit meestal eerst geregistreerd en vervolgens wordt het effect van een of ander effect op de functie van de cellen bepaald. Volgens een andere methode wordt een elektrische impuls door de geïmplanteerde elektrode aangelegd om de dichtstbijzijnde neuronen kunstmatig te activeren. Dus je kunt de effecten van bepaalde delen van de hersenen op de andere gebieden bestuderen. Deze methode van elektrische stimulatie was nuttig bij de studie van stamactiverende systemen die door de middenhersenen gaan; het wordt ook gebruikt wanneer men probeert te begrijpen hoe de processen van leren en geheugen plaatsvinden op het synaptische niveau.

Honderd jaar geleden werd het duidelijk dat de functies van de linker en rechter hemisferen verschillend zijn. Een Franse chirurg, P. Brock, die patiënten met cerebrovasculair accident (beroerte) observeerde, ontdekte dat alleen patiënten met schade aan het linker hemisfeer leden aan een spraakstoornis. Verdere studies van de specialisatie van de hemisferen werden voortgezet met behulp van andere methoden, bijvoorbeeld EEG-registratie en evoked potentials.

In de afgelopen jaren zijn complexe technologieën gebruikt om beelden (visualisaties) van de hersenen te verkrijgen. Aldus heeft computertomografie (CT) een revolutie teweeggebracht in de klinische neurologie, waardoor het in vivo gedetailleerde (gelaagde) beeld van hersenstructuren kon worden verkregen. Nog een visualisatiemethode ?? positronemissietomografie (PET) ?? geeft een beeld van de metabolische activiteit van de hersenen. In dit geval wordt een kortdurende radio-isotoop geïntroduceerd in een persoon, die zich ophoopt in verschillende delen van de hersenen, en hoe meer, hoe hoger hun metabole activiteit. Met behulp van PET werd ook aangetoond dat de spraakfuncties van de meerderheid van de onderzochte personen verband houden met de linker hemisfeer. Omdat de hersenen werken met behulp van een groot aantal parallelle structuren, biedt PET dergelijke informatie over hersenfuncties die niet kan worden verkregen met enkele elektroden.

In de regel wordt hersenonderzoek uitgevoerd met behulp van een combinatie van methoden. Bijvoorbeeld, de Amerikaanse neurobioloog R. Sperri, met werknemers, gebruikte als een behandelingsprocedure om het corpus callosum (bundel van axonen die beide hemisferen verbinden) te snijden bij sommige patiënten met epilepsie. Vervolgens werd bij deze patiënten met een "gespleten" brein de hemisferische specialisatie onderzocht. Het bleek dat voor spraak en andere logische en analytische functies de dominante dominante (meestal linker) hemisfeer verantwoordelijk is, terwijl de niet-dominante hemisfeer de ruimtelijk-temporele parameters van de externe omgeving analyseert. Dus het is geactiveerd als we naar muziek luisteren. Een mozaïekbeeld van hersenactiviteit suggereert dat er tal van gespecialiseerde gebieden zijn binnen de cortex en subcorticale structuren; de gelijktijdige activiteit van deze gebieden bevestigt het concept van de hersenen als een computerapparaat met parallelle gegevensverwerking.

Met de komst van nieuwe onderzoeksmethoden zullen ideeën over hersenfuncties waarschijnlijk veranderen. Het gebruik van apparaten die ons in staat stellen om een ​​"kaart" van de metabole activiteit van verschillende delen van de hersenen te verkrijgen, evenals het gebruik van moleculair genetische benaderingen, zou onze kennis van de processen in de hersenen moeten verdiepen. Zie ook neuropsychologie.

Bij verschillende soorten gewervelde dieren komen de hersenen opvallend veel overeen. Als we vergelijkingen maken op het niveau van neuronen, vinden we een duidelijke overeenkomst van eigenschappen zoals de gebruikte neurotransmitters, schommelingen in ionenconcentraties, celtypen en fysiologische functies. Fundamentele verschillen worden alleen onthuld in vergelijking met ongewervelde dieren. De neuronen van ongewervelde dieren zijn veel groter; vaak zijn ze niet met elkaar verbonden, maar door elektrische synapsen, die maar zelden in het menselijk brein worden aangetroffen. In het zenuwstelsel van ongewervelde dieren worden sommige neurotransmitters gedetecteerd die niet kenmerkend zijn voor gewervelde dieren.

Onder gewervelde dieren hebben verschillen in de structuur van de hersenen voornamelijk betrekking op de verhouding van de individuele structuren. Bij het beoordelen van de overeenkomsten en verschillen in de hersenen van vissen, amfibieën, reptielen, vogels, zoogdieren (inclusief mensen), kunnen verschillende algemene patronen worden afgeleid. Ten eerste hebben al deze dieren dezelfde structuur en functies van neuronen. Ten tweede lijken de structuur en functies van het ruggenmerg en de hersenstam sterk op elkaar. Ten derde gaat de evolutie van zoogdieren gepaard met een uitgesproken toename in corticale structuren die maximale ontwikkeling bereiken bij primaten. Bij amfibieën vormt de cortex maar een klein deel van de hersenen, terwijl bij de mens? dit is de dominante structuur. Er wordt echter aangenomen dat de principes van het functioneren van de hersenen van alle vertebraten bijna hetzelfde zijn. De verschillen worden bepaald door het aantal interneuronverbindingen en interacties, die hoger is, hoe complexer de hersenen zijn. Zie ook ANATOMIE VERGELIJKEND.

Hersenen: functies, structuur

De hersenen vormen natuurlijk het grootste deel van het menselijke centrale zenuwstelsel.

Wetenschappers denken dat het slechts 8% is.

Daarom zijn de verborgen mogelijkheden eindeloos en niet bestudeerd. Er is ook geen relatie tussen talenten en menselijke capaciteiten. De structuur en functie van de hersenen impliceren controle over de gehele vitale activiteit van het organisme.

De locatie van de hersenen onder de bescherming van de sterke botten van de schedel zorgt voor de normale werking van het lichaam.

structuur

Het menselijk brein wordt betrouwbaar beschermd door sterke beenderen van de schedel en neemt bijna de gehele schedelruimte in beslag. Anatomisten onderscheiden voorwaardelijk de volgende hersengebieden: de twee hemisferen, de romp en de kleine hersenen.

Er wordt ook een andere divisie genomen. Delen van de hersenen zijn de tijdelijke, frontale lobben en de kruin en de achterkant van het hoofd.

De structuur is samengesteld uit meer dan honderd miljard neuronen. De massa is normaal heel anders, maar het bereikt 1800 gram, voor vrouwen is het gemiddelde iets lager.

Het brein bestaat uit grijze massa. De cortex bestaat uit dezelfde grijze materie, gevormd door bijna de gehele massa zenuwcellen die bij dit orgaan horen.

Daaronder is verborgen witte materie, bestaande uit processen van neuronen, die geleiders zijn, zenuwimpulsen worden verzonden van lichaam naar subcortex voor analyse, evenals opdrachten van de cortex naar delen van het lichaam.

De verantwoordelijkheidsgebieden van de hersenen voor hardlopen bevinden zich in de cortex, maar ze bevinden zich ook in de witte materie. Diepe centra worden nucleair genoemd.

Vertegenwoordigt de hersenstructuur, in de diepten van zijn hol gebied bestaande uit 4 ventrikels, gescheiden door leidingen, waar het fluïdum dat de beschermende functie uitvoert, circuleert. Buiten heeft het bescherming tegen drie schelpen.

functies

Het menselijk brein is de heerser over het hele leven van het lichaam, van de kleinste bewegingen tot een hoge denkfunctie.

Hersenverdelingen en hun functies omvatten de verwerking van signalen van receptormechanismen. Veel wetenschappers denken dat haar functies ook verantwoordelijkheid voor emoties, gevoelens en geheugen omvatten.

Details moeten rekening houden met de basisfuncties van de hersenen, evenals de specifieke verantwoordelijkheid van de secties.

beweging

Alle motorische activiteit van het lichaam verwijst naar het beheer van de centrale gyrus, die door de voorkant van de pariëtale kwab loopt. De coördinatie van de bewegingen en het vermogen om evenwicht te bewaren zijn de verantwoordelijkheid van de centra in de occipitale regio.

Naast het occiput bevinden dergelijke centra zich direct in het cerebellum en dit orgaan is ook verantwoordelijk voor het spiergeheugen. Daarom leiden storingen in het cerebellum tot verstoringen in het functioneren van het bewegingsapparaat.

gevoeligheid

Alle zintuiglijke functies worden gecontroleerd door de centrale gyrus die langs de achterkant van de pariëtale kwab loopt. Hier bevindt zich ook het besturingscentrum van de lichaamspositie, de leden ervan.

Zintuigen

Centra in de temporale kwabben zijn verantwoordelijk voor de auditieve gewaarwordingen. Visuele sensaties voor een persoon worden geleverd door de centra in de achterkant van het hoofd. Hun werk wordt duidelijk aangetoond door de tabel met oogonderzoek.

De verstrengeling van de windingen op de kruising van de stoffelijke en frontale kwabben verbergt de centra die verantwoordelijk zijn voor reuk, smaak en voelbare gewaarwordingen.

Spraakfunctie

Deze functionaliteit kan worden onderverdeeld in het vermogen spraak te produceren en spraak te verstaan.

De eerste functie wordt motor genoemd en de tweede is sensorisch. De sites die verantwoordelijk zijn voor hen zijn talrijk en bevinden zich in de windingen van de rechter- en linkerhersenhelft.

Reflex-functie

De zogeheten langwerpige afdeling omvat gebieden die verantwoordelijk zijn voor vitale processen die niet door het bewustzijn worden beheerst.

Deze omvatten contracties van de hartspier, ademhaling, vernauwing en verwijding van bloedvaten, beschermende reflexen, zoals scheuren, niezen en braken, evenals het monitoren van de toestand van de gladde spieren van de inwendige organen.

Shell-functies

Het brein heeft drie schelpen.

De structuur van de hersenen is zodanig dat naast bescherming elk van de membranen bepaalde functies vervult.

De zachte schaal is ontworpen om te zorgen voor een normale bloedtoevoer, een constante stroom zuurstof voor zijn ononderbroken functioneren. Ook produceren de kleinste bloedvaten met betrekking tot de zachte huls ruggenmergvloeistof in de ventrikels.

Het arachnoïdmembraan is het gebied waar de liquor circuleert, voert werk uit dat de lymfe in de rest van het lichaam uitvoert. Dat wil zeggen, het biedt bescherming tegen pathologische middelen om in het centrale zenuwstelsel binnen te dringen.

De harde schaal grenst aan de botten van de schedel, zorgt samen met hen voor de stabiliteit van de grijze en witte medulla, beschermt deze tegen schokken, verschuift tijdens mechanische impact op het hoofd. Ook scheidt de harde schil zijn secties.

afdelingen

Waaruit bestaan ​​de hersenen?

De structuur en de hoofdfuncties van de hersenen worden door de verschillende onderdelen ervan uitgevoerd. Vanuit het oogpunt van de anatomie van een orgaan van vijf secties, die werden gevormd in het proces van ontogenese.

Verschillende delen van de hersencontrole en zijn verantwoordelijk voor het functioneren van individuele systemen en organen van een persoon. De hersenen zijn het belangrijkste orgaan van het menselijk lichaam, de specifieke afdelingen zijn verantwoordelijk voor het functioneren van het menselijk lichaam als geheel.

langwerpig

Dit deel van de hersenen is een natuurlijk onderdeel van de wervelkolom. Het werd eerst gevormd in het proces van ontogenese, en het is hier dat de centra zich bevinden die verantwoordelijk zijn voor ongeconditioneerde reflexfuncties, evenals ademhaling, bloedcirculatie, metabolisme en andere processen die niet door het bewustzijn worden beheerst.

Achterste hersenen

Waar is het achterste brein voor verantwoordelijk?

In dit gebied bevindt zich het cerebellum, een gereduceerd model van het orgel. Het is het achterste brein dat verantwoordelijk is voor de coördinatie van bewegingen, het vermogen om evenwicht te bewaren.

En het is het achterste brein dat de plaats is waar zenuwimpulsen door de neuronen van het cerebellum worden overgedragen, zowel vanuit de extremiteiten als andere delen van het lichaam, en omgekeerd, dat wil zeggen, de gehele fysieke activiteit van een persoon wordt gecontroleerd.

gemiddelde

Dit deel van de hersenen is niet volledig begrepen. De middenhersenen, de structuur en functies worden niet volledig begrepen. Het is bekend dat de centra die verantwoordelijk zijn voor perifeer zicht, de reactie op scherpe geluiden zich hier bevinden. Het is ook bekend dat delen van de hersenen zich hier bevinden die verantwoordelijk zijn voor het normale functioneren van de waarnemingsorganen.

tussen-

Hier is een sectie genaamd de thalamus. Door het passeren van alle zenuwimpulsen verzonden door verschillende delen van het lichaam naar de centra in de hemisferen. De rol van de thalamus is om de aanpassing van het lichaam te beheersen, een reactie te bieden op externe stimuli, ondersteunt de normale zintuiglijke waarneming.

In de tussensectie bevindt zich de hypothalamus. Dit deel van de hersenen stabiliseert het perifere zenuwstelsel en bestuurt ook de werking van alle inwendige organen. Hier is het on-off organisme.

Het is de hypothalamus die de lichaamstemperatuur, de tonus van de bloedvaten, de samentrekking van gladde spieren van inwendige organen (peristaltiek) regelt en ook een gevoel van honger en verzadiging vormt. De hypothalamus bestuurt de hypofyse. Dat wil zeggen, het is verantwoordelijk voor het functioneren van het endocriene systeem, regelt de synthese van hormonen.

De finale

Het uiteindelijke brein is een van de jongste delen van de hersenen. Het corpus callosum zorgt voor communicatie tussen de rechter en linker hemisfeer. In het proces van ontogenese werd het gevormd door de laatste van alle samenstellende delen, het vormt het belangrijkste deel van het orgel.

Gebieden van het uiteindelijke brein voeren alle hogere zenuwactiviteit uit. Hier is het overweldigende aantal convoluties, het is nauw verbonden met de subcortex, waardoor het hele leven van het organisme onder controle is.

Het brein, de structuur en functies zijn grotendeels onbegrijpelijk voor wetenschappers.

Veel wetenschappers bestuderen het, maar ze zijn nog lang niet in staat om alle mysteries op te lossen. De eigenaardigheid van dit lichaam is dat zijn rechterhersenhelft het werk van de linkerkant van het lichaam beheerst, en ook verantwoordelijk is voor algemene processen in het lichaam, en de linkerhelft coördineert de rechterkant van het lichaam, en is verantwoordelijk voor talenten, vermogens, denken, emoties en geheugen.

Bepaalde centra hebben geen dubbels in het tegenovergestelde halfrond, bevinden zich in linkshandigen in het rechtergedeelte en in rechtshandige links.

Concluderend kunnen we stellen dat alle processen, van fijne motoriek tot uithoudingsvermogen en spierkracht, evenals emotionele sfeer, geheugen, talenten, denken, intelligentie, worden beheerd door één klein lichaam, maar met een nog steeds onbegrijpelijke en mysterieuze structuur.

Letterlijk, het hele leven van een persoon wordt geregeld door het hoofd en de inhoud ervan, daarom is het zo belangrijk om te waken tegen onderkoeling en mechanische schade.

De volgende cellen overheersen in het menselijk brein

Dus, de auditieve zone van de cortex bevindt zich in de temporale lobben en neemt impulsen waar van de auditieve receptoren.

De visuele zone ligt in de achterhoofdskwabben. Het neemt visuele signalen waar en vormt visuele beelden.

De olfactorische zone bevindt zich op het binnenoppervlak van de temporale lobben.

De gevoelige zone (pijn, temperatuur, tactiele gevoeligheid) wordt in pariëtale lobben geplaatst; haar verlies leidt tot verlies van gevoel.

Het motorische midden van de spraak ligt in de frontale kwab van de linker hemisfeer. Het meest frontale deel van de frontale kwabben van de cortex heeft centra die betrokken zijn bij de vorming van persoonlijke kwaliteiten, creatieve processen en drijfveren van een persoon. Conditioneel reflexverbindingen zijn gesloten in de cortex, en daarom is het het orgaan voor het verkrijgen en accumuleren van levenservaring en het aanpassen van het organisme aan constant veranderende omgevingscondities.

De hersenschors van de voorhersenen is dus het hoogste deel van het centrale zenuwstelsel dat het werk van alle organen regelt en coördineert. Het is ook de materiële basis van menselijke mentale activiteit.

Je Wilt Over Epilepsie